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Abstract

Distributed Denial-of-Service (DDoS) attacks are one of the major causes of concerns for com-

munication service providers. When an attack is highly sophisticated and no countermeasures are

available directly, sharing hardware and defense capabilities become a compelling alternative. Future

network and service management can base its operations on equally distributed systems to neutral-

ize highly distributed DDoS attacks. A cooperative defense allows for the combination of detection

andmitigation capabilities, the reduction of overhead at a single point, and the blockage ofmalicious

traffic near its source.

Cooperative defense systems face many challenges, such as deployment complexity due to high

coordination overhead, reliance on trusted and stable channels for communication and the need for

effective incentives to bolster cooperation among all involved parties. These challenges impairing

the widespread deployment of existing cooperative defense are: (a) high complexity of operation

and coordination, (b) need for trusted and secure communications, (c) lack of incentives for service

providers to cooperate, and (d) determination on how operations of these systems are affected by

different legislation, regions, and countries.

Driven by challenges imposed in a cooperative network defense, Blockchain Signaling System

(BloSS) is presented as an effective and alternative solution for security management, especially co-

operative defenses, by exploitingBlockchains (BC) andSoftware-DefinedNetworks (SDN) for shar-

ing attack information, an exchange of incentives, and tracking of reputation in a fully distributed and

automated fashion. Therefore, BloSS was prototyped and evaluated through local and global experi-

ments, without the burden to maintain, design, and develop special registries and gossip protocols.

Evaluation results based on the local and global prototyping of BloSS highlight its effectiveness in

signaling information of large-scale DDoS attacks. The world-wide scale evaluation experimenting

the interaction between Autonomous Systems (AS) victim of DDoS attack and ASes acting as mit-
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igators, presented an average of 97 seconds to complete all eleven possible outcomes of the BloSS

protocol. The reputation assessment, based on the transparency of actions carried out on BC using

Beta reputation and individual thresholds of trust for eachmember, showed that the defined protocol

is capable of punishing malicious providers and benefiting providers by acting honestly.

The definition of contracts in BloSS stipulates the cooperative logic based on BCs and allows for

the increase of trust among cooperative operators due to their transparent exchange of selected in-

formation and respective incentives on a per request basis. Overall, the main achievement and ad-

vantages reached with the design, prototypical implementation, and evaluation of BloSS include (a)

the use of an existing distributed infrastructure, the BC, to flare white- or blacklisted IP addresses

and to distribute incentives related to the mitigation activities requested. Furthermore, it provides

a proof-of-concept for (b) a cooperative, operational, and efficient decentralization of DDoS mit-

igation services, and (c) a compatibility of BloSS with existing networking infrastructures, such as

Software-Defined Networking (SDN) and BC.
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Kurzfassung

Distributed Denial-of-Service (DDoS)-Angriffe sind eine der Hauptbedrohungen für Anbieter von

Kommunikationsdienstleistungen. WenneinAngriff technischausgereift ist undkeinedirektenGegen-

maßnahmen zurVerfügung stehen, wird die gemeinsameNutzung vonHardware undVerteidigungs-

fähigkeiten zu einer zwingenden Alternative. Das zukünftige Netzwerk- und Dienstmanagement

kann seine Operationen auf vollständig verteilte Systeme stützen, um hochgradig verteilte DDoS-

Angriffe zuneutralisieren. EinekooperativeVerteidigungermöglichtdieKombinationvonErkennungs-

und Abwehrfähigkeiten, die Reduzierung des Overheads an einem einzigen Punkt und die Block-

ierung bösartigen Datenverkehrs in der Nähe seiner Quelle.

Kooperative Verteidigungssysteme sind mit vielen Herausforderungen konfrontiert, wie z.B. der

Komplexität des Einsatzes aufgrund des hohen Koordinationsaufwands, der Abhängigkeit von ver-

trauenswürdigen und stabilen Kommunikationskanälen und der Notwendigkeit wirksamer Anreize

zur Förderung der Zusammenarbeit zwischen allen beteiligten Parteien. Diese Herausforderungen

beeinträchtigendenweit verbreitetenEinsatzbestehender kooperativerVerteidigung: (a)hoheKom-

plexität von Einsatz und Koordination, (b) Notwendigkeit einer vertrauenswürdigen und sicheren

Kommunikation, (c) Mangel an Anreizen für die Anbieter von Dienstleistungen zur Zusammenar-

beit und (d) Feststellung, wie der Betrieb dieser Systeme durch unterschiedliche Gesetze, Regionen

und Länder beeinflusst wird.

Von denjenigen Herausforderungen bestimmt, die durch eine kooperative Netzwerkverteidigung

entstehen, wird das Blockchain Signaling System (BloSS) als eine effektive und alternative Lösung

für das Sicherheitsmanagement, insbesondere für die kooperative Verteidigung, vorgestellt, indem

Blockchains (BC) und Software-Defined Networks (SDN) für den Austausch von Angriffsinforma-

tionen, den Austausch von Anreizen und die Verfolgung der Reputation auf vollständig verteilte und

automatisierte Weise genutzt werden. BloSS prototypisch entwickelt und durch lokale und glob-
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ale Experimente evaluiert, ohne die Notwendigkeit, Betriebskosten spezieller Register bzw. Daten-

banken und Gossip-Protokolle vorsehen zu müssen.

Die Evaluierungsergebnisse auf der Grundlage der lokalen und globalen Prototypisierung von

BloSSunterstreichen seineWirksamkeit bei derSignalisierungvon Informationenüber großangelegte

DDoS-Angriffe. Die weltweite Auswertung, bei der die Interaktion zwischen Autonomen Systemen

(AS), welche typischerweiseOpfer vonDDoS-Angriffen sind, und AS, die alsMittelsman fungieren,

getestet wurde, ergab einen Durchschnitt von 97 Sekunden, um alle elf möglichen Endzustände des

BloSS-Protokolls zu erreichen. Die Reputationsbewertung, die auf der Transparenz der auf den BCs

durchgeführtenAktionenunterVerwendungderBeta-Reputationund individuellerVertrauensschwel-

len für jedesMitglied basierte, zeigte, dass das definierte Protokoll in der Lage ist, böswilligeAnbieter

zu bestrafen und Anbieter durch ehrliches Handeln zu begünstigen.

Die kooperative Logik auf der Grundlage von BCs erlaubt die Definition von Verträgen in BloSS

und ermöglicht die Stärkung des Vertrauens zwischen den kooperativen Akteuren aufgrund ihres

transparenten Austauschs ausgewählter Informationen und entsprechender Anreize auf einer Pro-

Anfrage-Basis. Insgesamt gesehen gehören zu den wichtigsten Errungenschaften und Vorteilen, die

mit demEntwurf, der prototypischen Implementierung und der Evaluierung des BloSS erreicht wur-

den, die Nutzung einer bestehenden verteilten Infrastruktur, der BCs, dem Eintrag von IP-Adressen

inWhite- bzw. Black-Listen und zur Verteilung von Anreizen in Zusammenhangmit Gegenmaßnah-

men. Darüber hinaus erlaubt es den Nachweis des einsatzfähigen Konzeptes für eine kooperative,

betriebsbereite und effiziente Dezentralisierung von DDoS-Mitigaton-Diensten und eine Kompa-

tibilität mit bestehenden Netzwerkinfrastrukturen auf der Basis von Software-Defined Networking

(SDN) und BCs.
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1
Introduction

Thetechnological evolution and the rapid growthof the Internet havebuilt a digitally networked soci-
ety, which is indispensable for communication and interaction on a planetary scale. As the number of
connected devices (portable and stationary) increases, the complexity of systems providing content
for these devices or the communication infrastructure, increased in a similar proportion to support
the growing volumeof traffic [3]. As a consequence, these complex distributed systems are subject to
several types of failures and threats that can compromise, for example, entire societies whose Critical
Infrastructures (CI) are connected to the Internet [70].

Among thevarious threats to the Internet and its underlying systems,DistributedDenial-of-Service
(DDoS) attacks are one of the biggest threats to the availability of services on the Internet. A DDoS
attack is defined as a coordinated attempt to make a target system’s resources unavailable to legit-
imate users by bombarding them with high-bandwidth traffic, or they directly target the comput-
ing resources through malformed packets designed to generate overwhelming computational loads
[124, 125]. In both cases, defending against these attacks at the ingress point of the traffic quickly be-
comes infeasible due to the constrained resources available for the defense at the target. In contrast
to this centralized approach, a decentralized defense, where the DDoS mitigation takes place at the
egress of the attack on the individual targets is preferable [265].
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Figure 1.1: (a) Number of Connected Devices and (b) Number of Large-scale DDoS Attacks

Although being a widely known type of attack, it remains one of the significant causes of concern
for service providers around the world and nations concerned with its CI’s [138]. For example, the
United States Department of Defense (DoD) declares the cyberspace as the fifth dimension of de-
fense areas, complementing the traditional land, water, sea, air warfare dimensions [146]. Behind
the various reasons that motivate a DDoS attack, is the increasing number of, often insecure, de-
vices connected to the Internet. As observed in Figure 1.1a, the number of IoT devices is surpassing
the number of non-IoT devices (e.g., mobile phones, laptops, computers, and others), wherein such
devices ranges from small sensors to baby cameras and home gateways, and are the main target of
software that systematically exploit vulnerabilities to infect thousands of such devices [3, 192]. Such
software is termed malware, and it is defined as a malicious piece of code using resources of its host
system to perform undesirable or malicious activities [83]. In a DDoS context, once a device is in-
fected bymalware, it defined as a bot, a device running a softwarewhose resources are unintentionally
used to execute commands. Moreover, naturally, a Botnet is a system composed of a cluster of Bots
controlled by at least one attacker.

Botnets taking advantage of the lack of security of these IoT devices are the primary basis for these
large-scale attacks (cf., Figure 1.1b). While 2018 registered the most massive DDoS attack in terms
of traffic volume, peaking 1.7 TBps onGitHub servers, the frequency of DDoS attacks also increased
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more than 29.7% times between 2015 and 2016 [117]. However, the almost 52% reduction in the
number of large-scale attacks from 2016 to 2017 did not denote a reduction in attacks. Akamai re-
ported that the majority of attacks were between 250 Mbps and 1.25 Gbps in traffic volume. How-
ever, in 2018 there was an alarming increase of 67.1% in the number of large-scale attacks due to the
different Mirai variations and reflection attacks based on Memcached [117].

Themost prominent example is theMirai botnet, which exploits default andweak security creden-
tials to take control of the host and spreads itself to other devices. Mirai was the botnet responsible
for marking the transition toward an era of super attacks, in which the traffic volume at the target sys-
tem often surpasses 1 TBps [3]. The first appearance ofMirai was in September 2016 when it peaked
623Gbps of traffic volume in an attack against Krebs Security. Akamai, the company hosting theWeb
site, had to shut down this site because defending it during three days became too costly. It was re-
ported that somany devices were used that attackers did not have to use any sophisticated strategy. A
month later, inOctober 2016, the attack onDynDNS peaked 1.2 TB/s, resulting in the unavailability
of significant Internet platforms and services (e.g., Twitter, GitHub, PayPal, Spotify, and others) by
rendering their Domain Name System (DNS) servers unavailable [192].

The United States of America (U.S.A.) released in 2018 an estimate of costs related to malicious
cyber activities (including DDoS attacks) of around 57 and 109 billion USD for incidents appearing
only in 2016 [252]. These costs involve not only direct losses for a target and economically linked
companies, but also incurs in indirect costs involving the maintenance and improvement of systems
security. Further, Gartner [154] corroborates with the U.S.A. estimate, predicting in 2018 a cost
of 114 and 124 billion USD in 2019, representing an increase of 8% for one country only. While
cost numbers are not precise on a global scale, there exist estimates, such as [155], that predict costs
related to cybersecurity (not only including DDoS) activities to exceed 1 trillion USD cumulatively
for thefive years from2017-2021, taking into account the growingnumberof Internet ofThings (IoT)
devices that empower DDoS attacks.

As a consequence, the cyber-security community (industry and academy) is becoming increas-
ingly concerned with DDoS attacks dimensions, and the possibility of those being used as a cyber-
weapon on systems that are crucial for the functioning of the state and society, such as logistics,
health, and energy. For example, the USDepartment of Defense declares the cyber-space as the fifth
dimension of their national security along with operations on air, land, sea, and space. Therefore, as
observed in academia and industry trends, as DDoS attacks become progressively more distributed
and coordinated, the defense from such attacks likewise requires distribution and coordination.
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1.1 Cooperative NetworkDefenses

Different detection andmitigationmethods are available to prevent or reduceDDoS attacks damage.
A typical implementation is called on-premises defense, which is implemented by the target system
based on dedicated ASIC-based (Application-specific Integrated Circuit) appliances to analyze flow
records exported from edge routers and to filter malicious traffic or perform load balancing. Alter-
natively, there are off-premises protection services that can be distributed (mostly cloud-based) or
decentralized (cooperative). While the former serves as a proxy receiving, analyzing, and redirecting
traffic to the target, which delegate detection and mitigation tasks to the protection provider (e.g.,
Akamai [3] or CloudFlare [43]), the latter is a decentralized approach typically implemented as a
cooperative overlay network.

A cooperative networkdefense allows to combinedetection andmitigation capabilities of different
domains, reducing the overhead at a single point, and block malicious traffic near its source. How-
ever, there is still no widespread deployment of such a cooperative defense system. As identified in
[183, 265], the main challenges of existing approaches are identified as: (1) the high complexity of
operation and coordination; (2) the need for trusted and secure communication; (3) lack of incen-
tives for the service providers to cooperate; (4) understand how the operations of these systems are
affected by different legislation, regions, and countries.

The literature contains many industry and academic proposals. Secure Overlay Services (SOS)
[103], COSSACK [175], and DefCOM [169] paved the way for cooperative defenses in the early
2000s. While SOS focused on identifying legitimate sources for time-sensitive networks (i.e., requir-
ing peers to authenticate to the overlay network), COSSACK andDefCOMbased their approach on
detection and enforcement points in access networks. However, these approaches required changes
in routers [169, 175], or requiring the sources to be registered [103], thus, presenting a high com-
plexity of coordination and operation (1).

More recent approaches, such as CoFence [195] and Bohatei [69], are based on relatively new
technologies. For example, NFV (Network Function Virtualization) and SDN (Software-Defined
Networking), that can reduce the complexity of coordination and operation. However, other chal-
lenges, such as economic (2), and social (3) are not fully addressed. Thus, a technical solution for a
cooperative defense should avoid not only additional hardware and software costs, but also be simple
to deploy and operate. Further, it should also encompass the support for incentives that can be safely
distributed amongparticipants and that legal/conformity options can be selected to (4), for example,
restrict operation to specific regions/countries or members. These challenges are summarized in the
following categories:
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1. Technical: The Internet is a heterogeneous environment whose underlying infrastructure is
composed of many different protocols, systems, and networking equipment. The challenge is
to abstract hardware/software differences of the underlying infrastructure or operates based
on existing standards, avoiding to impose additional software or hardware requirements.

2. Social: The public image of a service provider is often its most valuable asset. Thus, all the
communication of such defense also needs a trusted channel to make sure that the attack in-
formation provided to all members is not only reliable but also private to its members. Thus,
the challenge lies in how to establish and manage trust in a cooperative environment.

3. Economic: Solely relying on voluntary contributions creates a favorable environment for
free-riding (consuming resources without contributing). Incentives among the participating
members need to be provided. Costs are in the form of CAPital EXpenditures (CAPEX) to
configure andmaintain the communication infrastructure as well as OPErating EXpenditures
(OPEX) to cover resource utilization costs for the actual attack mitigation.

4. Legal: It is necessary to understand and react upon the differences in the legal aspects of each
region or country, which can influence the cooperation among members. For example, for
legal reasons, a member may be prevented from blocking traffic of a suspected host.

1.2 Blockchain-based Cooperative Defense

Blockchain (BC) technology is the core element of BloSS not only to exchange information about
attacks but also to distribute the necessary incentives. While it simplifies various technical and eco-
nomic aspects, social and legal aspects may be impaired by its use. All information in a BC is im-
mutable and transparent to all participants of the cooperative defense, and while transparency has a
positive impact in trust, information leaks about signaled attacks could result in potential damages to
the public image of a domain. Thus, there is a need to build a consensus among participants about
the confidentiality of information exchanged in the BC and eventual penalties in case of information
leaks.

Smart Contracts (SC) are another important element, which are computer programs running
within the BC. SCs are formal algorithms comprising of agreements between stakeholders being au-
tomatically enforced, verified, and replicated by nodes composing the BC to ensure its permanent
storage and high obstacles tomanipulate the contract’s content [21]. Combined, SCs running on the
BC and decentralized applications (dApp) are BloSS main components. While SCs describe how
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information is exchanged among service providers, the dApp’s contains the parameters that define
how a service provider interacts in a cooperative defense.

Advantages of using BC and SCs in a cooperative defense are [200]: (a) to make use of an already
existing infrastructure to distribute rules without the need to build specialized registries or other dis-
tributionmechanisms/protocols, (b) to apply rules across multiple domains, whichmeans that even
if the AS (Autonomous System) of the victim is not applying these rules, traffic can still be filtered,
and (c) the victim or its AS can control which customers get blocked. The only central element re-
maining is to show proof of IP ownership.

Therefore, whileBCcan (1) reduce the complexity of operation and coordinationbyusing existing
infrastructure to distribute rules without specialized registries or protocols, it also can foster a (2)
trusted cooperation due to its transparency and decentralized characteristics. Also, it can provide
financial incentives (3), which foster cooperative behavior among service providers, [198]. Thus,
BC capabilities can be leveraged for signaling mitigation requests across a decentralized network in
a similar approach than DefCOM [169] and serve as an immutable platform for the exchange of
mitigation services, where participants express their needs in forms of incentives.

1.3 ResearchQuestions

The challenges briefly described in Sections 1.2 and 1.1 (and further detailed in the course of this
thesis as in the overview of the state-of-the-art in Chapter 3) reinforce the opportunity for the pro-
posal of coping solutions with the challenges of collaborative defenses. Henceforth, the main goal of
this thesis is to provide a cooperative defense approach providing a technical answer for each of these
categories combined into a single system. Based on the challenges mentioned above, the following
Research Questions (RQ) drive this thesis.

RQ1: Can a BC-based cooperative system reduce operation and deployment complexities?
Theproposed approach shall be simple to deploy and operate, aiming to avoid extra hardware
or software requirements on the underlying network infrastructure. Also, it should not only
perform the signaling of attacks but also provide a platform for social, economic, and legal
aspects to be implemented.

RQ2: Howtobalance transparencyandprivacy inacooperativesystem, increasing trustamong
cooperativemembers? In RQ2, the proposed solution shall punish malicious behavior of its
members, preventing false-reporting and free-riding (i.e., service providers that only request
defense without contributing). Also, it defines the confidentiality requirements imposed on
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the technical challenge concerningmessages privately exchanged between itsmembers to per-
form the signaling of an attack.

RQ3: How toprovide financial incentives to foster cooperative behavior among itsmembers?
RQ3 concerns the economic impact and how to provide the necessary incentives to cover cap-
ital and operational expenses. Thus, the proposedmethod should provide a platform based on
BC, enabling the exchange of incentives to boost cooperative behavior.

RQ4: How to ensure compliance across different jurisdictions? RQ4 refers to enable or disable
its operation in certain regions, or countries, or the interaction with selected participants to
comply with organizational/legal obligations.

Toanswer theposedquestions, a referenced researchmethod is used to: (a)overview the core con-
cepts on which this thesis is based, (b) analyze the state-of-the-art concerning cooperative defenses,
listing their characteristics and proposals, as well as differentiating them from what is proposed in
this thesis. Then, the applied research consists of the design, prototyping, and validation of BloSS in
order to verify whether the proposed system satisfied the research questions.

1.4 Methodology

Thiswork is based on referenced and applied research, in which the theoretical background related to
the state-of-the-art in DDoS attacks and cooperative defenses was obtained by a qualitative research.
The applied research involves the steps related to the design and prototyping stages of BloSS applying
techniques and concepts related to network and decentralized systems. To summarize, the research
methodology employed consists in the following steps:

1. Literature Review and Analysis: analyze the state-of-the-art in DDoS attacks, cooperative
defenses, and concepts related to BC and decentralized systems.

2. Design and Architecture Definition: design an architecture and method able to fulfill the
objectives and answer the research goals. Such architecture should consider the the capabili-
ties and requirements imposed by BC and SCs.

3. Prototyping: Implement and troubleshoot the designed elements. Thus, this stage involves
the implementation and troubleshooting of BloSS, considering that the prototyping process
reveals conditions not observed in the proposal.
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4. Evaluation: Evaluate BloSS in order to determine whether the proposed goals and questions
were met and reports the benefits and related problems. In this sense, the experiments and
evaluations take place at different stages, starting from a simulated prototyping until the de-
ployment and experimentation of the prototype in real environments at different scales (i.e.,
locally at a dedicated cluster and globally based on nodes across the world).

1.5 ResearchMethods

This thesis consist of research in which, besides the referenced research, studies related to the focus
area and participation in correlated projects were developed. To verify whether the proposed sys-
tem satisfied the research questions, the validation stage goes beyond the evaluation of its technical,
quantifiable aspects. It also relies on a qualitative evaluation based on factors demanding interaction
with external academia or industry partners.

At first, the referenced research method is used to understand concepts and requirements to de-
sign the system addressing the research questions (cf., Chapters 2 and 3). Then, the applied research
consists of the design, prototyping, and validation of a prototype in order to evaluate the concept
proposed. Also, the BloSS prototype is evaluated quantitatively (Subsection 1.5.1) and qualitatively
(Subsection 1.5.2). While the quantitative evaluation aims to analyze performance in terms of end-
to-end latency for signalingwhite or blacklisted IP addresses, thequalitative evaluation should answer
based on existing systems and approaches whether the BloSS satisfies the research questions.

1.5.1 Quantitative

The goal is to measure how the system behaves in a real world deployment to create a basis for com-
parative analysis whendata is provided by relatedwork. For example, the systemperformance should
measure the latency for signaling DDoS attacks, i.e., how much time is required to propagate the in-
formation about an ongoing attack on all nodes involved in the mitigation request. This analysis is
particularly important because BC-based approaches typically introduce a delay to create and repli-
cate blocks in the network. Thus, the proposed approach should ideally be able to signal attacks in a
timely manner so that cooperative defense become effective. Also, performance analysis should as-
sess the impact on hardware resources, such as network traffic and CPU consumption, memory and
storage (i.e., relevant for answering RQ1).

The quantitative evaluation is essential as a basis to a qualitative evaluation. For example, if the
DDoS attack signaling time (i.e., latency to report an attack) is longer than the duration of the attack,
the BC-based approach becomes inefficient. Conversely, the quantitative evaluation cannot deter-
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mine how effective is the approach, and a comparison with related work or a user evaluation may be
required.

1.5.2 Qualitative

The qualitative evaluation examine whether the research questions were satisfied. It may consider a
comparison with related work when comparable data is provided or a user-oriented perception (in-
terviews, questionnaire) over the technical aspects. For example, a claim about the system deploy-
ment/operation complexities (RQ1) is based on the system performance (i.e., end-to-end latency
for signaling of black or whitelisted addresses).

RQ2 is evaluated similarly. Once security is often based onmultiple non-quantifiable dimensions,
a statement on the system security should be supported by a user perception concerning CIA (Con-
fidentiality, Integrity, and Availability). Also, a comparative analysis based on related work can be
possible analyzing which requirements, methods, and tools could be deployed to ensure that data
is confidential, not tampered, and available when requested. RQ3 (concerning financial incentives)
and RQ4 (legal compliance) have their qualitative analysis simplified by the quantitative evaluation.
Since RQ1 andRQ2 are related to the addition of features in the cooperative defense, the challenge is
to verify the impact of the implementation of these features in RQ1 (complexity of deployment and
operation).

1.6 Thesis Contributions

This thesis’ structure is defined based on these research questions, which driven by the specific re-
search questions posed, determine contributions to the state-of-the-art in cooperative defenses. The
key contributions of this thesis can be summarized as follows:

• A survey of cooperative network defenses approaches and studies, providing an overview of
the major aspects of a cooperative defense and showing the gap in existing approaches.

• The Blockchain Signaling System (BloSS), an cooperative defense approach based on BC and
SCs, is presented for the design of a collaborative defense whose technical requirements do
not impose restrictions on the underlying systems.

• BloSS is evaluated considering the different relevant aspects composing a cooperative defense,
showing its simplicity and effectiveness to signal information related to DDoS attacks, and to
distribute the incentives in a decentralized and transparent way.
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Those contributions improve the understanding concerning cooperative defenses, providing a so-
lution to apply this understanding in practice, and giving insight into the benefits of decentralized
cooperative defenses. BC systems can foster trusted cooperation because they not only operate on
the principle of decentralization, helping to eliminate third-party intermediaries but also to provide
incentives for stimulating cooperative behavior among service providers. Similarly, this thesis lever-
ageBCcapabilities for the signalingmitigation requests and to serve as an immutable platform for the
exchange ofmitigation services, where each participant can express their needs in forms of incentives.

1.7 Thesis Outline

The core chapters of this thesis and its methodology are highlighted in Figure 1.2. Additionally,
Chapter 7 closes this thesis summarizing the achievements, contributions, answers to research ques-
tions, and future work.
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Figure 1.2: Organization and Methodology

• Chapter 2: Provides the background on the major concepts involved the thesis. Thus, are
presented concepts concerning DDoS attacks and defenses, as well as an overview on major
BC elements and operation concepts.

• Chapter 3: Reviews the literature related to cooperative defenses in order to reinforce the
need for approaches capable of solving the listed challenges. Therefore, the chapter presents
an updated review of the works analyzing them from the point of view of technological, social,
economic, and legal challenges.
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• Chapter 4: Introduces the design of the cooperative signaling protocol that defines the se-
quence of steps in the communication between a target (i.e., DDoS attack victim) and a co-
operative mitigator (i.e., third-party involved in the cooperation). Also, this chapter reveals
how the main on-chain design aspects are addressed, involving how BloSS strikes a balance
between performance and confidentiality of the shared data.

• Chapter 5: Addresses aspects of the decentralized application that communicates with the
on-chain protocol, as well as the networkmanagement system. This chapter complements the
cooperative signaling protocol by presenting as data transmitted off-chain are made secure,
including options for each participant in the collaborative defense including which members
in which regions the interactions are made.

• Chapter 6: Presents evaluations and discussions of different aspects of BloSS such as the rep-
utation system, off-chain signaling and cooperative signaling protocol. These assessments in-
clude tests in different scopes such as simulations (assessing correctness), local (deployed in
local clusters or networks), and global to assess the performance in an environment close to
the real world conditions.

• Chapter 7: Concludes the thesis summarizing the achievements, contributions, and future
work.

• Appendices: provide additional information onmajor elements included in the thesis. These
are included as follows:

– AppendixA: Presents detailed description of theworks presented in the state-of-the-art
of collaborative DDoS defense.

– Appendix B: Shows implementation details (i.e., listings and respective descriptions)
of the SCs used in BloSS.

– Appendix C: Presents details of the world-wide BloSS evaluation described in Chapter
6.

– Appendix D: Reveals in full level of detail the evaluation of the reputation system used
in BloSS.

– Appendix E: Describes the list of vulnerabilities in smart contracts used as a basis for
evaluating BloSS contracts.

– Appendix F: Details scientific publications and bachelor’s andmaster’s theses from this
thesis, contributing directly or indirectly to obtain the objectives of the thesis.
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2
Theoretical Foundations

This Chapter describes the major concepts involved in this thesis. Since the context of collabora-
tive defenses is multi-disciplinary, involving in addition to purely technical elements for developing a
system, it is also necessary to understand concepts about fostering trust and incentives for collabora-
tion to be encouraged. Thus, herein are presented concepts concerning DDoS attacks and defenses,
Blockchain (BC) elements and operation, and reputation tracking and management. Further, once
BC is a fundamental concept in the proposal, design, and evaluation of BloSS, a greater relevance is
given to the description of the related concepts in this Chapter.

2.1 DistributedDenial-of-Service Attacks

Different types of Denial-of-Service (DoS) attacks, including the distributed ones, i.e., Distributed
Denial-of-Service (DDoS) attacks. Ultimately, all forms of DoS and DDoS attacks share the same
goal: denying or degrading legitimate users to access services in a network or server [97]. Thus, the
objective involves denigrating a target system’s ability to provide a service by limiting (i) access to
that service or (ii) the provider’s computational capacity. WhileDoS attacks involve a single attacker,
which from a single system seeks to render the target’s resources unavailable, DDoS attacks involve
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multiple attackers distributed in a network aiming to exhaust the target’s resources. For instance,
whereasDoS attacks can exploit bugs and flaws in an application, DDoS attacksmay target to exhaust
the target’s network bandwidth by flooding packets or server’ resources by consuming CPU cycles,
random memory, static memory.

In the same way that there are different types and forms of DoS and DDoS attacks, there are also
different types of defense for these attacks, either alone or in cooperation. While this section presents
the different types of attacks, as well as examples of large-scale DDoS attacks, the different types of
defense are covered in the Section 2.2 with a greater focus on the description of cooperative defenses.

2.1.1 Motivations Toward DDoS Attacks

As the number of DDoS attacks increases not only in frequency, but also in their most varied types,
their motivations or reasons behind the attacks are still not completely clear. Zargar et al. [265] clas-
sifies these motivations in five different domains, as outlined below:

1. Economical: aims to undermine the ability of other businesses to provide an online service.
For example, online stores can choose a significant sales day (e.g., Black Friday or CyberMon-
day) to impair the sales capacity of competitors.

2. Revenge: it is characterizedby frustrated individuals (ex-employees, angry customers, hackers
over minor disagreements, among others) with or without knowledge to carry out the attack.

3. Political: attacks perpetrated by this reason are motivated by ideological belief reasons, in
which attackers can, for example, impair the service of certain companies, which do not align
with their ideological beliefs. Examples of ideological attacks are [162, 265]: the Estonian
attack in 2007, Chinese hacktivist group on CNN in 2008, WikiLeaks in 2010, and others.

4. Intellectual challenge: attackers of this categorymay comprise from“script kiddies” basedon
pre-written scripts and tools to launchDDoS attacks until experienced attackers whose goal is
to try their skills or new tools.

5. Fun/Altruistic: attackers in this category can range from beginners to experienced attackers,
who look for fun or pride tomake an online product or service unavailable. These can become
particularly difficult to have countermeasures in case of experience users since they typically
use Botnets to enhance the volume of traffic directed to the victim.

6. Cyberwarfare: comprise the rangeof attacks that are alsopoliticallymotivated, butperformed
by (or on behalf of) nations aiming to impair critical services or infrastructures of another
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country [178]. Attackers from this category are considered to be well trained individuals (by
their own nation or hired from hacktivist groups) with ample resources.

Motivations or incentives to realize a DDoS attack are as complex as the psychology of human
relations, which are the basis for several different reasons within these categories outlined above. On
theonehand, themost varied reasons are observed for small-scale attacks considering that these often
require little technical knowledge from the attackers. On the other hand, it is observed that large-
scale attacks are hardly isolated actions from inexperienced attackers [183], due to the complexity
of assembling a sufficient number of devices to generate the volume of traffic necessary to prevent a
content provider from providing services e.g., the DynDNS attack in 2016 [192]. Thus, large-scale
DDoS attacks tend to be the result of group efforts oftenwith economic or cyberwarfaremotivations.

2.1.2 Types of DDoS Attacks

Different factors, such as the number of attackers (i.e., devices) involved and the type of resource
exploited on the target, can be used to classify DDoS attacks. This subsection follows a general clas-
sification, in which the different types of attacks can be classified into three different categories as
observed in [44, 64, 94, 133]:

1. Volumetric: Include several flood attacks that do not require establishing a connection with
the target i.e., stateless. The ultimate goal is to saturate the bandwidth of the attacked site, and
magnitude is measured in Bits per second (Bps).

2. Protocol: Also known as state-exhaustion attacks typically based on OSI (Open Systems In-
terconnection) layers 3 and 4 protocols (respectivelyNetwork andTransport) [44]. Protocol-
based attacks consumeactual server resources, or thoseof intermediate communicationequip-
ment, such as firewalls and load balancers, is normally measured in Packets per second (Pps).

3. Application: Sometimes it also refers to Layer 7 attacks [3, 44]. Comprised of seemingly le-
gitimate and innocent requests, the goal of these attacks is to crash, for example, thewebserver,
and the magnitude is measured in Requests per second (Rps).

Although sharing a common objective i.e., to render the target unable to provide service, DDoS at-
tacks have differences concerning their characteristics. While (1) volumetric attacks render target’s
resources unavailable by flooding their network based on stateless protocols, (2) protocol-based at-
tacks explore particular characteristics of stateful protocols (e.g., Secure Socket Layer - SSL, or Trans-
port Layer Security - TLS) by abusing requests and consuming the target’s computational resources.
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(3) Application layer attacks are typically measured in Requests per second (Rps) or the number of
requests made to an application. This category requires a smaller number of requests in contrast to
(1) and (2), and inmany cases a single packet exploiting an application vulnerability can be sufficient
to render it unavailable. In general, it is focused on overwhelming the CPU and memory.

There are two major differences between (1) and (2) types of attacks. While the first is typically
oriented towards the consumption (exhaustion) of the target’s network resources, the latter leads to
the exhaustion of the target’s computational inability to process malformed packets in connection-
oriented protocols. Hence, volumetric attacks are measured based on the traffic capacity generated
by a unit of time (e.g., Bits-per-second - Bps), attacks on protocols are measured by the number of
Packets-per-second (Pps). Table 2.1 summarize the differences between attack types.

Table 2.1: Differences Between Types of DoS and DDoS Attack Types

Type Metric Category Target Resource Attack Characteristics Examples

Volumetric Bits per-second (Bps) Stateless Network DDoS High volume of traffic
based on Botnets

Flood-based attacks
(ICMP, UDP)

Protocol Packets per-second (Pps) Stateful Network and
Compute

DoS and
DDoS

Malformed packets and
Reflection/Amplification

DNS amplification,
Ping of Death

Application Requests per-second (Rps) Stateful Compute DoS Malicious packets
exploring vulnerabilities

SQL injection,
XSS

Volumetric attacks are the ones attractingmost of the attention of the general public due to the vast
amounts of traffic generated in the targets, which has seen during the years of 2017 and 2018 to reach
the Terabit per second (Tbps) level (e.g., Memcached attack reached 1.7 Tbps on Github servers
in 2018 [117]). The idea behind volumetric attacks is straightforward: to send as much traffic as
possible to a target to overwhelm its available incoming bandwidth. Hence, these types of attacks are
basedonfloodingbecause they exhaust a target’s resourcewith requests, likeunwantedpings (ICMP)
or UDP traffic.

A report in [4] presents the distribution of attack types in the year of 2020 (cf., Figure 2.1). UDP
attacks were no longer the most common individual form of attack in 2020 (with 1.64%), not even
nearing the number of SYN DDoS attacks (92.57%). Mixed-method attacks were the largest type of
DDoS attack overall, however, and typically involved HTTPS floods and mixed attacks with HTTP
elements (0.29%). It is also important to note that these attacks are often combined in multi-vector
attacks. For example, volumetric attacks can reach significant numbers in terms of traffic when com-
bined with amplification/reflection techniques (e.g., DNS amplification). The concept of amplifica-
tion attacks exploits protocol failures in which the size of a response is always larger than the size of
the request (i.e., amplifying the attack size).
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Figure 2.1: SYN Attacks Are The Most Common Form of DDoS Attack as of 2020 [4]

Attack types at the protocol and application level need to establish a connection (i.e., stateful).
Both approaches exploit the discrete set of rules defined for the protocol or application to impair a
service. A difference between these two attack types is that while protocol attacks oftenwork at layers
3 and4of theOSImodel (operating innetworkdevices like routers), application-layer attacks operate
on layer 7, targeting a service running on edge server (e.g., a web application such as WordPress or
Apache). Another difference is that for an application attack, often a single malicious request can
impair the application at the target, not requiring the flood of requests on the server.

Ultimately, all attacking types have the same goal — to disrupt an online service. Therefore, an
application layer attack may also be multi-vector by combining volumetric and protocol attacks to
increase the likelihood of taking a service offline. Nonetheless, multi-vectors attacks present higher
levels of complexity for both the attacker and the target. While attackersmust coordinate thedifferent
attack vectors among themany different available bots, the defense becomes extraordinarily complex
on the target’s side due to the difficulty of distinguishing legitimate requests in scale.

2.1.3 Botnets

Botnets are the dominant mechanisms that facilitate the different types/vectors of DDoS attacks on
computer networks or applications [265]. Botnets are networks of infected devices under control of
a botmaster that can be used to execute a wide range of coordinated activities, which include, but it is
not limited to, the different DDoS attack vectors [183]. For example, other fraudulent activities such
as mail spamming (phishing), information theft (ransomware), and many extortions can be directly
attributed to botnet infrastructures. As previously mentioned (Chapter 1), the critical element that
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makes these attacks successful is mostly the large number of Internet-of-Things (IoT) devices like
dolls, toasters, thermostats, security cameras, and Wi-Fi routers [3]. These devices, which are often
not properly secured or not secure at all, are connected to the Internet and often execute arbitrary
code, being an easy target to leverage these devices to form a botnet.

As a consequence, massive botnets with thousands of bots have arisen posing a constant threat
for businesses and governments. A critical component of a botnet is their Command-and-Control
(CnC) infrastructure [183]. Botmasters are able to issue commands to bots via their CnC channel
to execute coordinated activities and over time, botnets and their corresponding structure of CnC
channels have evolved [11]. The origin of botnets is connected to Internet Relay Chat (IRC) where
bots were used to control interactions in chat rooms and they were not intended to deal harm. Next,
malicious bots targeting IRC users and servers appeared. In addition, more sophisticated botnets
using different propagationmechanisms, different architectures, and communication protocols were
developed.

A regular approach to classify a botnet is according its network architecture. Most existing bot-
nets employ a centralized architecture, although decentralized botnets have been frequently detected
[265]. In summary, the differences between those architectures are described as follows [2, 265]:

• Centralized: is comparable to the classic client-server model. Every bot establishes its com-
munication channel to one static CnC server. The CnC server provides malware updates and
is used by botmasters to send messages to the bots (clients) in order to initiate any kind of
action.

• Decentralized: bots are typically connected to other bots in the P2P (Peer-to-Peer) network
in order to exchange command and control traffic and every node acts as bot (client) andCnC
server. There are variations in which a given bot can act as a server for other bots for certain
rounds, similarly to DHT’s for distributing CnC commands.

Advantages of botnets with a centralized architecture include the low latency when sending com-
mands to bots, as well as the most efficient coordination [11]. Furthermore, this topology allows
statusmonitoring of the botnet by botmasters such as number of active bots. However, this structure
also yields two major weaknesses: firstly, a centralized botnet is easier detectable because many bots
connect to the same central CnC server. Secondly, the central server acts as a single point of failure
and can compromise the whole botnet [183].

Centralized botnets were primarily based on IRC (Internet Relay Chat) protocols in its origins
[11] ormore advanced bots predominantly use theHTTPprotocol (HyperText Transport Protocol)
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[265]. The communication between bots and CnC can be categorized into “push” and “pull.” When
using the push strategy, bots stay connected to the CnC host and wait for commands. The CnC
host, for instance, an IRC server, then distributes commands to all hosts in a broadcast-like manner
[11] or to specific bots through private IRC messages [225]. This enables botmasters to have real-
time control over bots and the botnet. Examples of centralized CnC botnets using push strategy are
Phatbot, Spybot, Sdbot, Rbot/Rxbot, and GTBot [114, 225]. In contrast to that, the pull strategy is
the polling-based bots. Bots poll the CnC Server (e.g., an HTTP webserver) in order to obtain new
commands. Through updating the central resource like a web page or a file, the botmaster can issue
new commands. When using a pull strategy, the botmaster typically does not have real-time control
over the bots because of the delay between submittingnewcommands to theCnCserver and the bots
fetching it by polling the server in a predefined time interval. A known bot using the pull strategy is
”Bobax,” which is mainly responsible for sending spam [265].

Due to the significant weaknesses of centralized botnets, decentralized Peer-to-Peer (P2P) based
architectures of botnets have emerged. P2P botnets have no central CnC servers and are therefore
more resilient to defenses and countermeasures [106, 114]. In this topology, bots connect to other
bots in the P2P network in order to exchange command and control traffic, and every node acts as
a bot (client) and CnC server, which makes the coordination of the network decentralized. Because
of the absence of a centralized infrastructure, it gets much harder to mitigate P2P botnets. If one or
more peers of a P2P botnet is lost, the communication will not be interrupted because there are still
other nodes in the network which can provide the command and control information [225]. This
characteristic is the main advantage of P2P botnets. Disadvantages of decentralized botnets are the
higher complexity and the propagation delay when issuing commands as well as a lack of guaranteed
message delivery [183].

Decentralized botnets work as an overlay network on top of the Internet and use different P2P
protocols. When forming a P2P botnet, generally, three different types of constructions exist: 1) a
“parasite” P2P botnet infects vulnerable hosts in an existing P2P network. Therefore, the botnet scale
is limited by the size of the existing P2P network, and in terms of flexibility. 2) in a “leeching” P2P
botnet, new bots join an existing P2P network and use it for command and control communication.
The field of potential bots or vulnerable hosts is as a result of this more prominent than for “parasite”
P2P botnets because bot-candidates could be inside or outside the existing P2P network. An early
version of the Storm botnet used the “leeching” technique [225]. 3) a “bot-only” P2P botnet builds
its dedicated network in which all members are bots. Botnets like Stormnet and Nugache belong to
this type [114, 265].
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Furthermore, Cooke et al. [48] proposes a third, unstructured model for botnets that could rep-
resent a new architecture in the future. In their proposed approach, a bot does not know more than
another bot, and bots do not actively fetch new commands from the CnC. Instead, they wait until
they get contacted by the botmaster. This could be done through randomly scanning the Internet
for bots and, if new bots are detected, the botmaster send them commands. The advantage of this
architecture would be that the detection of one bot could never compromise the whole botnet, once
there are less messages being exchanged between bots and CnC. Nonetheless, the downside is the
increased message latency by design in contrast to a centralized CnC architecture [48].

2.1.4 Booters: DDoS as a Service

The growth of Botnets by taking advantage IoT devices and their insecurities has created a new eco-
nomic model offering DDoS attacks as a service. In addition to preventing a target from providing
a service (and creating an economic impact as a consequence), Botnets can profit from each attack
once they aremadeof a networkof connectedBots ready toperformattacks ondemand. SuchDDoS-
as-a-Servicemodel is also referred to asBooters or IP Stressers [213], inwhich the access to the Botnet
is rented to payers through a web interface enabling to specify the targets of the attack for a certain
time. Booters are typically sold as type of SaaS (Software-as-a-Service)model, often including email
support and YouTube tutorials [115, 212].

The difference between an IP Stresser and a Booter is that while the first is a tool designed to test
a network or server for robustness, the second is mainly used by criminals to render websites and
networks unavailable. However, both share the same platform being a network of malware-infected
devices, which are “subleased” to subscribers. In both cases what is being “subleased” is the access
to the Botnet in order to launch attack “stressing” your own infrastructure or another target [212].
Basedonminimal or no regulation across countries, these tools, which requireminimal steps to verify
identity and ownership of a target, allows for “stress testing” any target, enabling cybercrime, cyber-
vandalismandmanyother types ofDDoS-related activities. In addition, it is possible to conclude that
the use ofBooters (i.e., hiring their services), as well as their availability is far frombeing restricted due
to the following main points [92, 115, 213]:

• Number of devices: Increasing number of unsafe connected IoT devices.

• Lack of strict legislation: Absence of strict legislation’s across different countries imposing
severe punishments on Stressers or Booters.

• Lack of cooperation: To detect and mitigate attacks once most Booters are behind of cloud
protection services such as Akamai or CloudFlare [3, 43].
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Characteristics ofBooterswere studied in [212], inwhich their differences in terms of offered types
of attack, payment models, Botnet size in terms of controlled bots, among other parameters were
specified and compared. The comparison of these parameters helped to establish a first notion of
howBotnets evolved and created opportunities for a newbusinessmodel, that in addition to harming
targets financially, they are also profiting from the attacks. Further, [115, 213] analyzed effects of
Booter attacks by hiring different Booters’ services to attack their own infrastructure. These works
allows to verify in depth the effects at the target’s infrastructure, on ISPs (Internet Service Providers)
and IXPs (Internet Exchange Points), the effects of using reflectors/amplifiers, as well as mitigation
strategies.

Despite developments andevolvingbusinessmodels thebotnet economyaspart of the cybercrime
economy still has many limitations and inefficiencies. [89] found that it is hard to monetize goods
and services in underground black markets (cf., Figure 2.2). They argue that the market for stolen
goods like credit card information or cybercrime-as-a-service is a market of lemons, where the buyer
does not know the quality of the product before buying it. Several factors contribute to this: First and
foremost, there is a large asymmetry of information. The seller has a lot more information about the
goods or services than the buyer. Secondly, there is no credible disclosure of the goods or services, as
they were illegally obtained and the seller has to stay hidden. Thirdly, there is a continuum of seller
from high to low reliability, and it being an illegal market without higher authority that is available
to punish fraud, the buyer has to reckon to get tricked himself and will tend to assume a low quality
of the goods and services, which results in a low price that he is willing to pay. Lastly, there is no
quality assurance or regulation [89]. In order to create a workingmarketplace and avoid a significant
undervaluation of the goods reputation, relationships and networks still play a crucial role in the
cybercrime market.

Figure 2.2 shows in specific the monthly revenue distribution by payment channel based on [27]
whereas the red solid vertical line marks when PayPal was no longer accepted. In addition to Figure
2.2 confirming that Booters handle large amounts of money, it is possible to observe a change in
the types of payments transitioning to from PayPal to cryptocurrencies (mainly Bitcoin). By August
2015, payments from PayPal channel decreased by $12,458 (44%) from an average of $28,523 over
the previous fivemonths. The Bitcoin payment channel increased by $6,360 (71%), but did not fully
compensate for lost revenue from PayPal [27].

Although many attempts have been made to build real post-sales and customer support platforms
to market goods and services, affiliates or trust-based middlemen still play a important role [22].
Therefore, [89] classify the underground economy into two tiers. One tier with established profes-
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Figure 2.2: Monthly Revenue for Booters by Payment Channel [27]

sional gangs of criminals that have built up a reputation and relationships with other groups, which
helps to overcome most of the above mentioned limitations and one tier for the less organized crim-
inals, who will have large difficulties to find buyers for their goods and services andmust sell them in
ripper infestedmarkets. This leads to lowmargins for the newcomers in the lower tier and onlyminor
gains, while the members of the upper tiers are engaged in profitable activities. The member of the
lower tier accept low pay and high risks because of the believe that the underground economy is a
path to get rich quick. These expectations are often promoted by unreliable and exaggerated ballpark
estimates of revenue streams. Thus, accurate revenue estimates are important also concerning their
influence on perceived attractiveness of participating in the botnet economy [89].

2.1.5 Real-World DDoS Attack Cases

To exemplify the previously exposed concepts andmotivate the need for a defense that has a defense
comparable to the attack, three selected cases of DDoS attacks are exposed. These are the GitHub
DDoS attack exploited by a general vulnerability on Memcached servers [117], and two primarily
distributed attacks based on the Mirai botnet (Deutsche Telekom and DynDNS).
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GitHub - February 2018

The attack onGithub’s infrastructurewas the biggest to date, reaching a record volume of 1.3Tbps in-
bound traffic [3]. The attack was based on a flaw in a cache data replication service (Memcached) in
which spoofing and reflection techniques were combined [117]. The goal was to use a reflective am-
plification in which the attacker makes a spoofed request (with the source IP address of the intended
victim) to vulnerable Memcached servers across the world, which replies to a victim IP address with
a more massive response. As a result, GitHub was a target being able to respond to after around 10
minutes of unavailability, i.e., Github services were not available world-wide for that length of time
[3].

Deutsche Telekom - November 2016

It was an attack caused by a modified version of the Mirai botnet, which uses an included set of 62
default username and password combinations [9], targeted 900 thousand routers of the German In-
ternet Service Provider (ISP) Deutsche Telekom. The modified version aimed at routers configured
with standard user/password combinations (reportedly, router devices such as Speedport W 921V,
W 723V Type B, and W 921 Fiber [4]). This Mirai-variant included a replication module targeting
an HTTP-based protocol used by many ISPs to auto-configure and remotely manage home routers,
modems, and other customer-on-premises (CPE) equipment [3]. This incident of unprecedented
stopovers forDeutscheTelekomhighlighted the concernwith the various often insecure devices con-
nected to the internet, demonstrating how hackers’ weaponization of more complex IoT vulnerabil-
ities can lead to powerful botnets, such as Mirai.

DynDNS - October 2016

One of the attacks thatmarked the era of super attacks happened in 2016, in the attack of a significant
name resolution service provider (DNS - Domain Name Server) [192]. The attack targeted servers
at DynDNS, a company that provides name resolution services to other major Internet content pro-
viders such as NetFlix, Github, PayPal, and Twitter. The attack whose primary cause was attributed
to the Mirai botnet [9] had ten million unique IP addresses distributed across the world, and hap-
pened in different attack waves [192]. For instance, the first wave (7 AM-9 AM EST) managed to
render the service unavailable for two hours, and the second wave (12 PM-1 PM) caused one hour
of unavailability.
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2.2 DistributedDenial-of-Service Defense

The increased frequency, complexity and strength of DDoS attacks have led to the proposal of nu-
merous defense mechanisms. Still, many proposals for counter DDoS have been proposed in which
many are still unable to effectively combat large-scale attacks. The literature presents different ways
to categorize DDoS defenses [151, 183, 265]. For instance, these can be structured according to the
type of deployment i.e., where the defense takes place in the network), type of activity i.e., whether it
is a reactive or proactive approach, the architectural type i.e., centralized, distributed, and decentral-
ized, and others.

2.2.1 Architectural Types

The type of architecture concerns the defense strategy against attacks also being related to the cate-
gory of defense location in the network. Hence, the type of architecture can be defined based on the
layout of the infrastructure and selected defense strategy. For example, a simple e-commerce service
can be define an on-premises defense based on the scale of visits/customers and resources available
on site, as well as combining such defense with off-premises ones. Therefore, there is no mutual ex-
clusion between types of architecture, which offers greater flexibility in possible strategies to combat
DDoS attacks.

• On-premises: the protection (i.e., detection andmitigation tasks) is implemented by the tar-
get system based on locally available resources. The defense can be centralized or distributed
across a network under the target’s control.

– Centralized: a single target (e.g., firewall, load balancer, intrusion detection/prevention
systems) to protect or network under its control.

– Distributed: a single target can havemultiple sites where the load related to an attack can
be distributed and mitigated.

• Off-premises: enforced by third-parties based on mutual agreements. Third-parties can be
distributed, in case of cloud-based protection services such as the ones offered by Akamai [3]
or CloudFlare [43], or decentralized based on a cooperative network defense.

– Distributed: a third-party acts as a proxy receiving, analyzing and redirecting traffic to
the target, which delegates detection and mitigation tasks to the protection provider.

– Decentralized: a target receive, analyze, and communicate attacks to one or more third-
parties through an overlay network, which can mitigate the attack based on the request.
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On-premisesDDoSdefenses aremost commondue to its simplicity to deploy and operate. In case
of on-premises centralized defenses, where a single target is attacked, resources available on site can
be used to detect andmitigate the attack depending on its scale. If such target hasmultiple servers dis-
tributed across different locations, attack traffic can be redirected (i.e., balancing the load) to reduce
the burden of detection and mitigation in a distributed fashion.

Off-premises defenses take place outside the scope of the target, i.e., involves third parties whose
traffic targeted to the targetmay be influenced by them. While distributed off-premises defenses typ-
ically involve cloud-based protection services that have a larger capacity for detection andmitigation
than the target, decentralized involve multiple independent third parties that can be distributed or
not. Therefore, decentralized defenses are more suitable to counter large-scale DDoS attacks due to
the potential involvement of multiple organizations.

2.2.2 Deployment Locations

Furthermore, on-premises and off-premises defenses can also be categorized according to deploy-
ment location where this defense occurs. In case of volumetric DDoS attacks (i.e., flooding-based),
these can be categorized as [151, 265]:

• Source-based: are tools deployed at or near the sources of the attack i.e., edge networks. The
idea is to prevent network customers from generating DDoS attacks.

• Intermediate Network: the defense takes place at the intermediate network, providing an
infrastructural defense service to a large number of hosts.

• Destination-based: it is the typical location where defense mechanisms are in place, since it
suffers the major impact of the attack and, therefore, it is the most motivated to deploy (and
bear the cost of) a DDoS defense.

Although the motivation for the existence of source-based mechanisms is valuable, their deploy-
ment is not always effective since, due to the highly distributed nature of the attacks, the detection
of attacks at the source is not simple, andmitigation goes through thementioned defense challenges.
collaborative. Defenses deployed at intermediate networks can be seen as defense services of third
parties (e.g., the service provider or the cloud protection service) in which a large number of cus-
tomers can be protected. However, due to the large volume of traffic, mitigation detection mecha-
nisms are often complex to operate. Therefore, the most traditional and effective ways to deal with
small and medium-scale attacks are defenses deployed at the destination i.e., target of the attack.
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2.2.3 Activity Types

The type of activity refers to the behavior of attack defense tools. Behaviors can be coarsely classified
as reactive, proactive, or passive:

• Proactive: are preventive mechanisms to eliminate the possibility of DDoS attacks and to
enable potential targets to endure the attack.

• Reactive: are mechanisms aiming to alleviate the impact of attacks by immediately detecting
and responding to it.

• Passive: mechanisms that can employ detection tools but do not take mitigation measures,
which can occur in infrastructures dealing with a high volume of traffic (e.g., core networks).

While proactive measures may involve the set of tools and actions to prevent an attack to happen,
reactive measures take immediate mitigationmeasures [133]. For example, a proactive measuremay
involve tools to constrain access to resources (i.e., limiting traffic and number of requests per connec-
tion). Conversely, a reactive measure would not limit access to resources but react once an attack is
detected enforcing mitigation measures on suspect connections. Alternatively, core networks where
employingmitigationmeasures is expensive due to the large traffic volume, may use coarse detection
mechanisms that could indicate whether a given host is a potential target.

2.2.4 Cooperation Degree

The relationship between entities in off-premises defenses can occur in different ways. As detailed
in [151], there is not always a balance between requests for cooperative DDoSmitigation, as victims
are not attacked equally. The authors define three degrees of cooperation [151]:

1. Autonomous: perform independent defense at the point where they are deployed (a host or
a network).

2. Cooperative: capable of autonomous detection and response, but can cooperate with other
entities and frequently have significantly better performance in joint operation.

3. Interdependent: cannot operate autonomously at a single deployment point requiring either
deployment at multiple networks, or relying on other entities for attack prevention, attack de-
tection or for efficient response.
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ThescenarioofDDoSattacks,with an increasingvolumeof trafficanddistributionof attack sources,
suggests that an equally decentralized form of defense is themost efficient way to counter such large-
scale attacks. In this sense, cooperation between different organizations becomes necessary to or-
chestrate countermeasures in a timely manner, as well as capable of comprising technical solutions
to the need for incentives and possible abuses within a cooperation. Proposed based on the charac-
teristics of BC, BloSS gathers the necessary characteristics to effect the collaboration between orga-
nizations providing a defense of cooperative network.

2.3 The IETFDOTS Standard

DOTS stands for DDoS Open Threat Signaling and is a standard currently developed at IETF (In-
ternet Engineering Task Force). DOTS can be described as a set of methods and principles to coor-
dinate defensive measures applied by mitigating peers. As such, DOTS is specified to strictly exist as
a standard focused on signaling, which means that in currently published standard document drafts
state actual mitigation-related as well as other responsibilities as being out-of-scope with respect to
DOTS. The following basic DOTS components are based on the official IETF DOTS Architecture
document [156]:

• DOTS client: The DOTS client can be described as the downstream DOTS party, which is
attached to a target (i.e., , server hosting a web-service) standing under attack.

• DOTS server: DOTS servers are the counterpart of DOTS clients, in such that they are affil-
iated with a mitigation service and therefore represent the upstream DOTS party.

The DOTS standard foresees a simple client-server communication based on DOTS agents (i.e.,
DOTS clients & servers). The communication is done via a signal channel and optionally, a data
channel, which both are mutually authenticated. DOTS does not dictate any specific authentication
method resp. technique, hence it is an official requirement for DOTS implementing systems to set
up the authentication process beforehand, i.e., prior to a signal channel being operational andDOTS
servers receiving mitigation requests from DOTS clients. Signal and data channels are specified as
follows [156]:

• Signal channel: To enable communication among upstream and downstreamDOTS parties,
a resilient connection – inDOTS called signal channel –must be put into place. DOTS clients
attached to an Attack Target use this signal channel to request mitigation support, while the
same channel is used by DOTS servers to transmit information about ongoing mitigations
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back to DOTS clients. TheDOTS signal channel is precisely specified in a separate document
([167]), enabling standardization and thus, compatibility among different solutions imple-
menting the DOTS standard.

• Data channel: is an optional connection between DOTS parties to exchange DOTS config-
uration and policy information, e.g., for DOTS clients to send accept-lists holding addresses
of trusted sources to their DOTS server. It is assumed, that data is only transferred over the
data channel during “normal” conditions, i.e., , not during ongoing attacks. Thus, there is no
requirement for the DOTS data channel to be as resilient as the signal channel.

Once the determined authentication process has been successful, both DOTS server and client
then establish a DOTS Session in terms of a client-server relationship. However, simple client-server
affiliations arenot sophisticatedenough to implementon topof themdistributed, collaborativeDDoS
mitigation systems. Thereby, a DOTS session traffic may flow over the DOTS signal channel, data
channel, or both. Signal channel sessions are specified to run over a single TCP resp., UDP session,
while using TLS or, the UDP-compatible DTLS as security protocol. Data channel DOTS sessions
are specified to use a single TLS-encrypted TCP connection.

In order to maintain DOTS sessions, agents periodically send heartbeat signals to each other. In
the case of aDOTSagent observing an extended absence of heartbeat signals from their counterparts,
DOTS sessions can be considered as terminated. Therefore, the reason is that sending an extensive
amount of heartbeat signals could potentially result in unintended denials of service at the receiver,
which would obviously defeat the purpose of DDoSmitigation services implementing DOTS. IETF
allows the DOTS agent operators to configure and set-up the DOTS session maintaining heartbeat
exchange mechanism. Nonetheless, the DOTS architecture document [156] states a clear caveat in
advising DOTS agent operators to not configure heartbeat signal intervals too short, which would
result in a high heartbeat frequency.

Although adecentralized attackmitigation couldbe achieved,DOTS is not a peer-to-peer protocol
(i.e., not fully decentralized). To achieve such decentralization, a fully meshed setup between all
peerswould have to be established or the recursiveDOTS relationshipswould have to span thewhole
network. It is unclear whether this condition will introduce a complexity that makes a decentralized
approach infeasible. Lastly, the IETF DOTS standard is applicable to a number of scenarios that
have been showcased to function with existing implementation that work in various configurations.
Most prominently distributed and decentralized mitigation solutions and services are conceptually
compatible. However, the complex nature of the DOTS architecture will only pay off for certain
scenarios.
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2.4 Blockchains andConsensusMechanisms

BCs offer a significant change for a variety of industries where the disintermediation of trust makes
sense by not only modifying technical operations, but also disrupting their business models, opera-
tion of existing processes, and legal compliance’s [203]. Through a decentralized and immutable data
storage, it also enables the enforcement and verification of exchange assets, while changing existing
areas by promoting the disintermediation of processes involving multiple stakeholders. By remov-
ing a mediator or a third party controlling the operation, less operational costs and higher business
agility are expected. This changemakes it necessary to understand not only the diverse requirements
imposed by each application area but also the technical differences between Blockchain (BC) and
Distributed Ledgers Technologies (DLT) in order to understand their trust models/assumptions.
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Figure 2.3: Typical Blockchain Data Structure based on Bitcoin [160]

In its purest form, i.e., as proposed inBitcoin [160], a BC acts like a decentralized and public digital
ledger that transparently and permanently record blocks of transactions across computers based on
a consensus algorithm without modifying the subsequent blocks (cf., Figure 2.3). However, permis-
sions to write and read, as well as the participation in the block-validation process, can be distributed
in different ways in a BC [203]. This allows for different types of BC, commonly referred to as Dis-
tributed Ledger Technologies (DLT), which have their characteristics flexible to suit the needs of
transparency and confidentiality of each use case. For example, the need to share sensitive data be-
tween stakeholders (e.g., patient data in the healthcare industry), could be based on a BC which,
however, should not be publicly accessible since sensitive data can be shared.

Although the BC does not provide an utterly trustless solution, the inherent disintermediation
contributes through its transparency to an increase of trust among the stakeholders involved [204].
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For example, BC technology can be the core element to exchange information about attacks and to
distribute the necessary incentives. While it simplifies various technical and economic aspects, social
and legal aspects may be impaired by its use. All information in a BC is immutable and transparent to
all participants of the cooperative defense. While transparency has a positive impact on trust, infor-
mation leaks about signaled attacks could result in potential damages to the public image of a domain.
Thus, there is a need to build a consensus amongparticipants about the confidentiality of information
exchanged in the BC and eventual penalties in case of information leaks.

genesis a1 a2 a3 a4 a5 a6

c3 c4 c5 c6

b4 b5

d4

Figure 2.4: A Chain of Blocks with its Canonical Chain Marked in Gray

From a data structure perspective, BC resembles a backward linked-list data structure (i.e., the for-
mal abstract data type name for “chains”), in which access rights to write, read, commit transactions
(the consensus result), and to participate in the consensus are required to be all public andopen at the
same time. Such a chain is depicted in Figure 2.4 whereas the common agreed view of information is
built by the changes stored in the blocks marked in gray. As its name suggests, a BC is a sequence of
blocks, each holding a collection of transactions. Among other fields, a block always holds a reference
to its parent. Thus, a BC acts like a shared, replicated, append-only database (cf., Figure 2.3) where
blocks are connected based on a hash value of the previous block, which links current blocks to pre-
vious ones composing the chain. Each block represents a number of transactions records, which are
confirmed and broadcast to the network so as every node in the BC has their own updated version of
the chain.

2.4.1 Blockchain Data Integrity and Immutability

An important aspect of BC concerning other data structures is its ability to guarantee the integrity
and authenticity of the data (cf., Figure 2.5). Immutability, refers to the BC ability to prevent changes
to transactions that have already been confirmed. Although transactions are generally related to the
transfer of assets (e.g., typically cryptocurrencies), they can also refer to the registration of other non-
monetary forms of digital data.
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Such verification of data integrity is a crucial step in P2P systems because the system is based on
a consistent view of the same data stored in different peers. This is possible through cryptography
tools such as public-key infrastructure, digital signatures, hashes, among other tools that enable the
creationof a unique identifier in timeof the informationpresent in a block, which includes the unique
identifier of the previous block. Once data (i.e., transactions) are submitted to a BC, they are digitally
signed by the issuer and, eventually, stored in a block. This block, containing other transactions, has a
hash that is calculated based on the hash of all other information stored in the block. Thus, changing
a single piece of information within the block would result in a different block hash, indicating that
the block has been modified and, therefore, resulting in a new branch of the BC, i.e., a fork.
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Figure 2.5: Merkle Tree Ensuring Integrity of Blocks [160]

Merkle Trees are a relatively simple and efficient way to guarantee the integrity of the BC, along
with the full data replication among all peers in the BC network [160]. Merkle Trees are typically
implemented as a binary tree, but they can also be created as an n-nary tree, with n children per node
whereas the leaves (i.e., children) are composed of data (i.e., transactions in a BC). The reason that
Merkle trees are useful in P2P systems is that it is inefficient to (a) check the entirety of files and (b)
transmit full data over the network. Therefore, the Merkle Tree receives the data on the leaves of the
tree as input and calculates the hash of these leaves and us recursively until reaching a single hash, the
Merkle Root. A data verification process based on Merkle Trees occurs as follows [237]:
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• Step 1: System A sends a hash of a file to another system B.

• Step 2: System B checks the received hash against the Merkle Tree root i.e., the Merkle Root.

• Step 3: If there is no difference between the hashes, then the file has not beenmodified. Oth-
erwise, continues in Step 4.

• Step 4: If there is a difference in a single hash, System B will request the roots of the two
subtrees of that hash.

• Step 5: System A calculates the required hashes and send to System B.

• Step 6: Steps 4 and 5 are repeated until one or more inconsistent data are found.

Decentralized systems can perform data integrity verification in a simple and efficient way. Each
time a hash is requested to be verified, it is required n comparisons at the next level where n is the
branching factor of a tree i.e., the tree level. Bitcoin implementation [160] relied on Merkle Trees
to ensure that transactions within a block are not altered, as well as the ordering of blocks since the
hash of previous blocks is included in the hash of the block to generate a unique identifier reflecting
the current ordering. Therefore, any participant in this network can verify the integrity of the chain,
since the data is replicated to all participants every time a new block is inserted. Thus, Merkle trees
are useful to verify information even when sent from an untrusted source, which is a concern in P2P
systems.

2.4.2 Permissioned and Permissionless Deployments

BCs can be classified in different types according to their read and write permissions. This differ-
entiation is depicted in Figure 2.6, where each quadrant represents a deployment type, the x-axis
represents the two alternatives write permissions (permissioned or permissionless), and the y-axis
represents the read permissions (public or private). The light gray square represents the definition
of a BC, while the dark gray squares represent DLs. Each deployment type is described as follows
[205, 217]:

• Public Permissioned denotes the real BC setting, write permissions are restricted to selected
entities, but anyone is able to read from the BC. For example, this deployment type can be
used for use cases, where multiple trusted authorities want to publish public data, accessible
to anyone, (e.g., publishing hashes of academic certificates).
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Figure 2.6: BCs and DLs Types of Deployment [217]

• Public Permissionless are the most prevalent type of BCs. Bitcoin [160], Ethereum [253],
and most of their forks are considered to be public permissionless BCs, due to their read and
write permissions, as well as the participation in the consensus, which is open to anyone with
Internet access. Thus, public permissionless BCs are the standard type of BCdeployment, and
most cryptocurrencies are implemented as such.

• PrivatePermissioned trustmodels resemble traditional databases, where read andwrite per-
missions are restricted, and consequently, data can only be read by authorized parties. Re-
stricting these permissions creates a hierarchy between participants (e.g., role-based actions),
where the main features of a BC (e.g., transparency, immutability, and decentralization) may
not be advantageous for a potential application.

• Private Permissionless are comparable to public permissionless BCs, but the notion of the
reading access control is restricted to a particular (pre-defined) group or community. There-
fore, writing and reading permissions are open to all participating members of such private
groups. A dedicated supply chain BC would also act as a possible example since the informa-
tion exchanged is only readable by its authorizedmembers, but all members can issue transac-
tions without limitations.

While permissioned represents a class of algorithms that restrict participation in the consensus to
a single or a set of trusted members, permissionless allows all members of the decentralized network
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to participate in the consensus process through a selection process. Further, while PBFT [32] and
XFT [128] are examples of algorithms supporting BFT including a portion of malicious members in
a peer-to-peer network, Proof-of-Work (PoW)[160] andProof-of-Stake (PoS) [161] are examples of
algorithmsbasedon (different) processes of selecting a leader, responsible for replicating information
on the network. Therefore, while permissioned algorithms require that there is direct trust in the
selected members, permissionless requires trust in the selection process i.e., in the algorithm, being
transparent to all members and verifiable.

Figure 2.7: Trust Boundaries in Permissioned and Permissionless Consensus Algorithms [25]

Permissioned and permissionless consensus with respect to trust boundaries are illustrated in Fig-
ure 2.7. Permissioned protocols (e.g., PoA, PBFT), but also traditional decentralized databases (e.g.,
P2P torrent, DHT -DistributedHash-Tables) that do not necessarily have an append-only structure.
Also, although there is no trust between all members, there is a trust of the members in a portion of
the leaders making the right to write in this decentralized database to be shared among these previ-
ously selected leaders. However, in a permissionless consensus in which the members do not trust
each other, but in the protocol, leaders are selected in each round by a selection process in the proto-
col (e.g., PoW, PoS) in which the result can be validated by all members.

There are significant trade-offs that should be taken into consideration before choosing a technical
option. For example, the trade-off between transparency and confidentiality is a relevant discussion
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to be considered, which also influences the BC type of deployment. While transparency is necessary
to increase the levels of trust between cooperative entities, privacy is also essential to ensure that
exchanged data do not reveal sensitive information. For example, if an organization A is cooperating
with an organization B, such cooperation should be visible on-chain but sensitive details and data
could be exchanged off-chain.

Table 2.2: Mapping Tradeoffs between Application Requirements to Blockchain Types

Req.
Types Public

Permissionless
Public
Permissioned

Private
Permissionless

Private
Permissioned

Transparency World
visibility

World
visibility

Community
visibility

Role-based
visibility

Control
Distributed, validators
are defined in an
election process

Distributed, validators
are defined in a
selection process

Distributed, validators
are defined in a
selection process

Centralized
based on
trusted nodes

Reliability Full replication Full or partial
replication

Full or partial
replication

Full or partial
replication

Performance Slow Medium Medium Fast

A balance between total transparency and full confidentiality is necessary in order to be able to
enhance trust in a cooperative defense scheme, and at the same time, preserve confidentiality of the
members. Therefore, a possible way to preserve confidentiality while the verification/validation pro-
cess of exchanged information is transparent to all members, i.e., the consensus within the permis-
sioned setting, while essential data is transparently negotiated on chain but lists of addresses to be
black or white-listed are exchanged off-chain.

Another trade-off to be considered is the relation between the reliability and performance aspects
(cf., Table 2.2), which is also the result of the discussion between centralization or decentralization.
BCs are naturally slower than any centralized database due to their complete replication of the data,
and consensus mechanism. Not only there is a latency to synchronize the state in all node, but also
the transaction performance is affected in temporal and spatial dimensions to keep a consensus in
the network (i.e., ensure that all nodes are in the same state). In this sense, the PoW algorithm has
a fundamental importance to guarantee that the BC is completely distributed, that is, the nodes re-
sponsible for deciding which transactions should be in the next block are not predefined entities but
chosen by a process that demands a computational effort of the elected node.
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2.4.3 Consensus Algorithms

The consensus algorithm is themain element of a decentralized system, being typically defined based
on the level of trust among its participants [268]. It is also important to note that consensus mecha-
nism emerged before BCs, as a way to handle synchronization failures in distributed or decentralized
systems. However, in any scenario, the consensus has as goal applying and verifying a set of rules es-
tablished by a set of participants acting in an organizedmanner. Thus, the specification of a consensus
scheme involves, besides the organization of the nodes and the definition of its rules of operation, the
infrastructure on which the BC operates, (e.g., the way messages are exchanged, the organization of
the network and the algorithms employed).

In distributed or decentralized systems, it is not only important to guarantee resistance to failures,
but also to ensure that transactions are ordered in a temporal manner according to their dispatch.
For example, if several people concurrently try to book the a seat on an airplane, then a consensus
algorithm could be used to determine which one of these mutually incompatible operations should
be the winner [134]. Therefore, a consensus algorithm must satisfy four properties [145]:

• UniformAgreement: No two nodes decide differently.

• Integrity: No node decides twice.

• Validity: If a node decides on value v, then v was proposed by some node.

• Termination: Every node that does not crash eventually decides on some value.

Thus, given a cluster ofN nodes and a set of proposals P1 to Pm, every non-failing node will even-
tually decide on a single proposal Px without the possibility to revoke that decision. All non-failing
nodes will decide on the same Px. In addition, there are different ways to compose the set of nodes
that will participate in the process and consensus. These different ways, in which different assump-
tions of trust are taken as a premise, distinguish the different ages or stages of the evolution of con-
sensus algorithms (cf., Figure 2.8).

2.3.3.1 Classic Models

Safety in distributed systems was widely studied since the 1970s, alongside the rise of distributed
databases and transactions [16]. In this first generation, most consensus algorithms were developed
considering a replicationmodel aiming to strike a balance between the required levels of performance
in contrast to a level of data redundancy towards the assurance that the systemwill be always available
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regardless of different types of failures. For example, the Two-phase Commit (2PC) was proposed
in 1978, allowing a transaction manager to atomically commit a transaction, depending on different
resources held by a distributed set of resource managers [79].

In the crash failuremodel, nodes may fail at any time by stopping to process, emit or receive mes-
sages. Usually these failed nodes remain silent [55], although a number of distributed protocols
consider recovery. Other aspects, were observed as distributed systems began their decentralization
process, i.e., nodes belonging to third parties could act maliciously. Whereas in distributed systems
nodes belong to the same organization (i.e.,N servers, single organization), in decentralized systems
there are several nodes that belong to several organizations (i.e., N servers, N organizations). Thus,
such models may lead to a byzantine failure model, assuming that failed nodes may take arbitrary
actions—including sending and receiving sequences of messages that are specially crafted to defeat
properties of the consensus protocol. Examples of CrashFailure-Tolerance (CFT) approaches are:

• TwoPhaseCommit (2PC): is an atomic commitment protocol ensuring that a transaction ei-
ther commits at all the resourcemanagers that it accessed or aborts [79]. Further, it guarantee
that transactions cannot fail silently without the transaction manager being aware.
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• Atomic Broadcast: is one of the major issues in distributed systems. It consists in providing
processes with a communication primitive that allows them to broadcast and delivermessages
in such a way that processes agree not only on the set of messages they deliver but also on the
order of message deliveries [51].

• StateMachineReplication (SMR): is a general method to implement fault-tolerant services
in distributed systems [220]. A fault-tolerant statemachine can be implemented by replicating
itself and running a copy on each processor in a distributed system. Thus, each copy run by a
non-faulty processor starts in the same initial state and executes the same requests in the same
order in order to produce the same output.

The idea of reaching consensus in adverse situationswas illustrated as an allegory of generals in the
Byzantine empire attacking Rome [121]. In this allegory, generals surrounding Rome should make
a unified decision to obtain a successful attack or retreat. While some generals may prefer to attack,
others would prefer to retreat or could even be bribed by Rome to retreat. Therefore, the allegory
evidences the importance of communication in a decentralized scenario and obtaining consensus
among most generals concerning the decision to attack or retreat. Formally, a byzantine agreement
is defined as [121]:

Finding consensus in a system with byzantine nodes is called byzantine agreement. An algo-
rithm is f− resilient if it still execute correctly with f byzantine nodes.

Therefore, as a natural evolution of crash failuremodels, consensus algorithms known asByzantine
support that up to a percentage of nodes act maliciously, i.e., node with arbitrary behavior including
“anything imaginable” such as not sending messages at all, or sending different and wrong messages
being sent to neighbors, or lying about the input value [267]. In the generals’ problem described
in [121], even when some generals (nodes) did not act in a unified manner either to attack or to re-
treat, it was possible to obtain a scenario of success. Examples of ByzantineFault-Tolerance (BFT)
approaches are:

• PracticalByzantineFaultTolerance(PBFT):ThePBFTorganizenodes tooperate in rounds,
so that in each round a primary node is selected according to pre-determined rules [32]. The
primary node (i.e., the leader) is then responsible for distributing information to other nodes.
The process is divided into three phases: Pre-Prepared, Prepared and Committed. To move
fromone phase to the next, a nodemust receive at least 2/3 of votes from all nodes. Therefore,
for this to be possible is required that the total number of nodes be known by the network.
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There are no computationally expensive mechanisms in this case, just a simple check between
nodes is necessary to reach a consensus.

• Paxos: is one of themost important andwidely used consensus algorithm since it was the first
algorithm proved to be correct [122]. It works by selecting a single value (proposal) from one
or more proposed values and distribute the value among the participants. Then, consensus is
achieved when a majority of systems running Paxos agrees on one of the proposed values.

• RAFT: works by assigning three states: follower, candidate, or leader. Then, a leader is elected
after a candidate node receives enough votes, and all changes then have to go through the
leader. The leader commits the proposed changes once replication on the majority of the fol-
lower nodes is completed [171].

• Tendermint: requires three consecutive steps (forming a round) in order to agree on a new
block: pre-vote, pre-commit, and commit [28] . In each, a 2/3 majority of nodes has to be
foundwhich agree on the problem statement. In each round of following these steps, validator
nodes start by decidingwhether they submit a pre-vote for a proposed block. If a node receives
the necessary majority of pre-votes stated above, it broadcasts a pre-commit message. Again,
if the node has received a majority of such messages, it validates the block and publishes a
commit message. Eventually, if the majority of commit messages is reached, a node accepts
the block.

• Cross-Fault Tolerance (XFT): uses a combination of asynchronous and synchronousmeth-
ods fornetwork communications further combining the speedofCrash-FaultTolerance (CFT)
and the reliability of Byzantine Fault Tolerance (BFT) [128].

• HoneyBadgerBFT: first practical asynchronousBFTprotocol, whichguarantees livenesswith-
out making any timing assumptions, i.e., HoneyBadgerBFT tolerates faults in the wild range
of wide-area-networks outperforming other BFT consensus algorithms [149].

2.3.3.2 Elected Leader

Classical consensus algorithms are marked by the presence of one or a set of nodes determined as
leaders, i.e., they require a certain level of trust pre-established in the network. With the introduction
of Bitcoin and PoW a new type of consensus was introduced, the lottery-based. In these algorithms,
a game is proposed by means of a protocol that typically requires the solution of a computational
problem (e.g., partial-hash collision), in which the winning player becomes the leader. Therefore, the
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leader is elected based on a protocol known and verified by all participants in the network. A list of
selected algorithms is described below [148, 217]:

• Proof-of-Work (PoW): was introduced in Bitcoin [160], being the first consensus algorithm
completely decentralized. In PoW, nodes known as miners participate in a hash competition
in which a miner needs to solve a partial hash collision competition, i.e., miners are required
to find a hash with a minimal number of zeros in the input, satisfying a certain target. This
mechanism introduces a computational overhead between miners to find the target hash in
minimal time.

• Proof-of-Stake (PoS): is an alternative to PoW inwhich, instead of requiring a computational
effort, miners are able to create blocks based on the amount of resources they have at stake
[267]. Based on such approach, PoS is able to reduce the energy costs of the expensive PoW
mining processes as well as the dependence on specialized hardware. However, in a PoS-based
BC, where no resource expenditure is required, the network is more susceptible to attacks.

• DelegatedProof-of-Stake (DPoS): projects a representative democracy where stakeholders
elect nodes to generate and validate blocks [267]. Malicious nodes will not pose a problem as
they can be easily removed from the delegation.

• Proof-of-Stake-Time (PoST): proposed in the cryptocurrency VeriCoin [187] as a time ac-
cepted nonlinear consensus thatmaintains the efficiencies of PoS,while attempting to increase
the distribution and security of the consensus. Time-acceptance is defined by a proof function
that defines a fraction of time active and idle at a given block. It is similar to the Proof-of-
Importance (PoI), but taking into consideration the age of coins to leverage older nodes in the
network.

• Proof-of-Authority (PoA): belongs to the same family as the PBFT [55]. A group of nodes
are recognised as authorities and identified by an unique id. It is assumed that themajority can
be trusted. The mining happens in rotation, where the creation of blocks is evenly distributed
among the authorized nodes. PoA is most often present in permissioned BCs.

• Proof-of-Capacity (PoC): defines hard disk space as a resource to mine the blocks [255].
Differently from PoWwhere CPU resources are required to participate in the partial-hash col-
lision game, in in PoC, the miners need to rapidly change a number (i.e., nonce) in the block
header aiming to find a correct hash value (above the target). The first miner to identify the
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correct hash value broadcasts that information to the network. PoC is also called Proof-of-
capacity (PoC) or Proof-of-storage (PoS).

• Proof-of-Contribution (PoCo): is based on users’ contribution to the network, describ-
ing their interactions and leveraging features such as staking (e.g., resources as computational
power) to build the required incentives [257]. It is also similar to protocols that rewards vol-
unteers for donating their computer time to scientific computation, such as astronomical ob-
servation data research.

• Proof-of-ElapsedTime(PoET)orProof-of-Time(PoT): designed tobeaproduction-grade
protocol capable of supporting large network populations that include byzantine actors [170].
PoET leverages a Trusted Execution Environment (TEE) to provide randomness and safety
in the leader election process via a guaranteed wait time. The protocol stochastically elects
individual peers to execute requests at a given target rate. These individual peers would then
sample an exponentially distributed random variable and wait for an amount of time dictated
by the sample [170]. The peer with the smallest sample wins the election.

• Proof-of-Burn (PoB): encourages users to burn – or make permanently unavailable –mined
coins in a verifiablemanner [93]. To burn the coins,miners send them to a verifiably unspend-
able address i.e., not possible to recover the coins. This process does not consume resources
and ensures the is active. Depending on the implementation, miners are allowed to burn the
native currency or the currency of an alternate chain. In turn, miners receive a reward in the
native currency token of the PoB chain.

• Proof-of-Brain (PoBR): stands for user activity and encourages engagement andquality con-
tent. The mining process occurs by creating or interacting with content through voting (i.e.,
likes and comments). The more likes, comments or proved views a page gets, the more coins
can be minted [231].

• Proof-of-Deposit (PoD): nodes in this scheme have to make a security deposit before they
canmine and propose blocks [28]. Hence, each validator node has to pay a security deposit in
order tobe able to createnewblocks. The logic behind thedeposit is that aprovably faultynode
would lose their security deposit onwhich a block reward has to be paid as interest. Therefore,
if a validator node produces an invalid block, it is penalised by losing its deposit. Conversely,
a honest validator can make a small profit on its deposit.
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• Proof-of-Importance (PoI): is amodified version of PoS (Proof-of-Stake)where it takes into
account more factors than only the nodes’ stake [210]. PoI can consider for example nodes’
reputation, number of transactions, usage and movement of tokens to determine a level of
trust and importance, and others. Further, PoI is suitable for IoT networks as it requires less
computational resources and low latency.

• Proof-of-Location (PoL): mostly used for IoT networks in which authenticated devices will
confidentially store locationdata [7]. It canbe seen as adigital certificate that attests someone’s
presence at a certain geographic location, at a certain time. Then, users can reveal this personal
information at will.

• Proof-of-Activity (PoAC): combines PoS and PoW towards an hybrid approach ensuring
that a stakeholder is selected in a pseudorandom but uniform fashion [18]. PoW and PoS are
combined together to achieve consensus andgood level of security. InPoA, theminingprocess
starts as a standard PoWprocess with various miners trying to outpace each other with higher
computing power to find a new block. When a new block ismined, the PoA switches to a PoS-
mode, with the newly found block containing only a header and the miner’s reward address.

Bitcoin’s PoW introduced a significant change for decentralized systems by also decentralizing the
consensus algorithm. Thus, by electing a leader through a lottery-based game in which participants
(i.e., miners) are challenged to solve an often difficult (computationally intensive) problem, the pro-
tocol was able to democratize the process of participation in the consensus in line with an incentive
scheme through transaction fees collected by the miners. Nevertheless, the popularization of BCs
and BC-based applications, imposes a series of performance requirements, which PoW is not able
to satisfy. Thus, many Proof-of-X algorithms emerged to balance the performance and security re-
quirements of the applications. For example, for applications where maintaining confidentiality to
a selected group of members is required, it is possible to use permissioned algorithms in which it is
possible to obtain a performance increase and the guarantee of restricted visibility to members.

An overview of these consensus mechanisms based on elected leader is presented in Table 2.3. In
addition to the categorization by performance and type, the finality of these algorithms is defined as
probabilistic or deterministic. While probabilistic models includes elements of randomness, deter-
ministic models removes any possible uncertainty and the same outputs are obtained given a certain
input. In addition, it is possible to distinguish between its algorithms according to the way (i.e., Type
as determined in Table 2.3) in which the algorithm reaches consensus. For example, in PoW-based
algorithms it is required that a non-trivial and self-adjusting computational problem be solvedwithin
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a certain period of time. Also, there are algorithms that require some kind of resource at stake, e.g.,
coins, computational power, storage capacity, among others.

Table 2.3: Comparison of Elected Leader Consensus Algorithms

Consensus Type Openness Performance Finality Short Description
PoW Work Permissionless Low Probabilistic Complex solution to find but easy to verify

PoS Stake Permissionless Medium Probabilistic Validator stake its coins, bigger stake has
higher chances to validate transactions

DPoS Stake Permissionless Medium Probabilistic
Network delegates permissions to validate
transactions to a small and selected number
of participants

PoST Stake Permissionless Medium Probabilistic Improvement of PoS by giving a mining
preference to older nodes (coins)

PoA Identity Permissioned High Deterministic Known participants are determined as authorities
in order to validate transactions

PoC Stake Permissionless Medium Probabilistic The more hard-drive disk space dedicated
the higher chances to participate in mining

PoCo Stake Permissionless Medium Deterministic Leverages the idea of desktop grid, being
based on the contributed computational power

PoL Identity Permissioned Medium Deterministic Beacons are used to detect nodes and timestamp
its presence in a synchronized manner

PoET Identity Permissioned Medium Probabilistic Transactions are validated in a trusted execution
environment with equally distributed time periods

PoB Stake Permissionless Medium Probabilistic Participants need to burn coins to be entitled to
participate in the mining process

PoBR Stake Permissionless Medium Probabilistic Incentivize participants to create and curate
content stored then in a blockchain

PoI Hybrid Permissionless Medium Probabilistic Similar to PoS including additional features that
influence nodes’ ranking

PoD Stake Permissionless Medium Probabilistic
Similar to PoS where participants need to
make a deposit to be entitled to validate
transactions

PoAC Hybrid Permissioned Medium Probabilistic Hybrid between PoW and PoS

In addition, there are algorithms in which leaders are pre-determined based on their identity (or
uniquely identifiable set of characteristics), which resemble algorithms of the first generation of con-
sensus butwhich, however, still allow the selectionof leaders. For example, this is the casewithProof-
of-Authority (PoA) in which the identity of the participants or the confidence of the other partici-
pants in this identity, determines their permission to validate blocks. Similarly, Proof-of-Importance
(PoI) aims to determine the relevance of the participants through their identity and other charac-
teristics that allow to trace a reputation history of this node i.e., an hybrid between stake and iden-
tity. Finally, algorithms can also be based on hybrid mechanisms to balance aspects of security and
performance. This approach is observed in Proof-of-Activity (PoAC) and, as described, in Proof-of-
Importance (PoI).

42



2.3.3.3 Hybrid Consensus in a Single Committee

Hybrid consensus models emerged as a way to overcome the limitations of just one consensus algo-
rithm (cf., Figure 2.9). It is possible to think, for example, of an application/use case that has a public
and a private part in which it is possible to use a specific consensusmechanism for each. For instance,
in the scenario of issuing educational certificates [205], educational institutions can use BC as a plat-
form to increase transparency between departments or different campuses of the same institution,
and use another public part using, for example, based on Bitcoin, to create a public record of issued
certificates.
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Figure 2.9: Hybrid Consensus in Single and Multiple Committees

The expanded idea would be to form a committee (e.g., based on PoW), and then have the com-
mittee use another consensus protocol (e.g., PBFT and its derivatives) within the committee to agree
on blocks [16]. Thus, by combining the use of different consensus into a single application would be
an approach to counter performance as well as safety limitations, such as weak consistency and low
fault-tolerance.

2.3.3.4 Multiple Committees, Sharding

While a single-committee consensus can improve significantly performance over a single consensus,
itsmajor limitation is that it scalability (cf., Figure 2.9). Thus, addingmoremembers to the committee
would decrease the throughput in terms of transactions per second. This motivated the design of a
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consensus that is achieved through multiple committees to transactions scalable by splitting across
multiple committees (shards), which then would process these transactions in parallel [45].

For example, in an application (e.g., recording of educational certificates [205]) that only needs to
create a proof of existence of a document (i.e., time-stamping), it is possible tomakeN records in the
form of transactions to be distributed simultaneously betweenM BCs. Thus, the application would
support hybrid sharding based on multiple communities. However, with multiple committees there
are questions concerning the arrangement of the topology of committees, whether those committees
can be trusted, and other concerns inherent to the traditional use of an application based on a single
consensus algorithm (e.g., performance of each committee, block size, block time) [16].

2.4.4 Smart Contracts

The notion of a Smart Contract (SC), as a computerized transaction protocol that executes the terms
of a contract agreed between the parties involved, was proposed long before the arrival of BCs [236].
The lack of a decentralized infrastructure providing a suitable disintermediationwas resolved byBCs,
and SCs nowbecame implementable, since BCs outline the perfect distributed environment for their
deployment and operation. The goal of an SC is to (a) satisfy common contractual conditions as
with any regular paper-based contracts, e.g., in terms of payments, liens, confidentiality, or even en-
forcement, (b) reduce malicious and accidental handling, and (c) avoid any trusted intermediaries.
Thus, the SCs concept is a viable path to automate and ensure agreements reliably and more effi-
ciently than paper-based contracts as of today. Henceforth, as specifically designed from scratch in
Ethereum [253], the BC has proven to be a highly appropriate infrastructure for the fully decentral-
ized and transparent execution of a mutual agreement between parties.

DespiteEthereumbecoming thefirst andwidely accessible platform that unveiled the entirepoten-
tial of SCs, Bitcoin also features contracts, however, only in the form of simple scripts for performing
transactions, which suite the finality of the application, i.e., a cryptocurrency, in a simple and effi-
cient manner [160]. In contrast, Ethereum proposed a sandbox environment through the Ethereum
VirtualMachine (EVM) [253], in which it is possible to execute arbitrary andTuring-complete code
directly on-chain, (i.e., allowing for the executionof loops). AnEVMdefines an environment isolated
from the host itself, being precisely the same for all Ethereum nodes (called “Ethereum Clients”) in
the BC network. A client software, e.g., Geth and Parity, is used for external communications and
interactions with the operating system of the host node.

Although there are currently many different BCs providing support for the execution of SCs, the
majority follows the model determined by Ethereum, in which a sandboxed environment ensures
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Figure 2.10: SC Deployment on the Ethereum Virtual Machine (EVM) [253]

that the execution of the SCs is precisely the same across all nodes of the network. Thus, Figure 2.10
illustrates the respective components involved in the creation of an SC in an EVM as well as the
deployment steps needed. While the SC is defined in a high-level language, e.g., by applying the Inte-
gratedDevelopment Environment (IDE) Remix, it is transformed and interpreted in bytecode, until
it is propagated on to the BC network according to the consensus algorithm configured in the EVM.
The EVM itself operates on the respective operating system and runs the Ethereum protocol. Thus,
the client communicates with the host’s operating system to broadcast the transaction containing the
bytecode corresponding to the SC, which is crafted into different IP packets and sent to the BC net-
work. The role of the EVM (i.e., the BC’s “virtual machine”) is crucial, since code must be identical
across all Ethereum nodes in the BC network and must comply with well-defined interfaces. There-
fore, it is possible to enable flexible support for different clients, which, in turn, can provide different
abstraction levels for the development of applications.

A relevant factor for the popularity of general-purpose, decentralized applications (dApps) based
onSCs, is the familiarizationofdeveloperswithhigh-level SCprogramming languages and themodus-
operandi of BC. Following the SC example as shown in Figure 2.10, it is possible to create a simple
application returning a string the text hello worldwhenever it is called (cf., Listing 2.1). Ethereumpro-
vides direct support for its high-level language “Solidity”, with a syntax based on JavaScript; however,
support for different languages that developers are familiar with exist if that language is compiled
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into EVM op-codes, which are interpreted and executed by the EVM. Thus, such flexibilization is
made possible through such abstraction layer allowing the use of different languages as long as your
compiler generates EVM opcodes.

1 pragma solidity ^0.4.10;
2 contract HelloContract {
3 string helloWorld;
4 function getHello() public {
5 helloWorld = "Hello World";
6 }
7 }

Listing 2.1: A Simple Hello World SC Example in Solidity

Regardless of the high-level language of the SC, the EVM interprets and executes EVM opcodes
based on an incentive scheme to execute these contracts, the gas. Thus, the higher is the complexity
of an SC, the higher will be the cost for its deployment and operation, demanding a higher amount of
gas for its methods to be executed. It is important to note that such an incentive scheme is required
for BCs, i.e., their permissionless deployments, since anyonewith Internet access can participate and,
thus, a mechanism is needed to prevent the BC from DoS attacks, either maliciously or just by acci-
dent, i.e., an endless loop within an SC. In contrast, for DLs, especially permissioned deployments,
such a necessity of incentivesmay not be needed, since the BCnetwork consists out of permissioned,
i.e., pre-selected stakeholders. Once a sufficient amount ofGas is provided for the SC’s deployment,
the EVM generates the bytecode, which is sent to the client.

2.5 Blockchain as an Enabler of Trust in a Cooperative Defense

Trust is a concept involving human relationships and builds the foundation for decision making in
different contexts or communities [41]. Trust factors exert a fundamental relevance in the influence
of decision-making processes, forming the understanding, establishment andmanagement of trust in
these contexts. However, trust is a highly subjective concept, often relying on individual’s behaviours
within particular contexts, which are governed by a set of rules [74]. For individuals, the consistent
ethical behaviour among peers enables the creation and establishment of trust, whereas the subset of
ethics may break out of the given set of rules, but still remain within the context itself.

With the creation of Bitcoin in 2008 [160], Blockchains (BC) played a key role in the perception
and establishment of trust. Instead of relying on a direct trust relationship in which there is a need to
know the identity and reputation of entities, BC follows a permissionless, or trustless, and fully de-
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centralized trust model where it is not necessary to have knowledge of entities but only their actions,
which are immutably and transparently available on the platform [21]. Therefore, there is a paradigm
shift from placing trust directly in an entity, now placing trust in the platform, whose capabilities en-
able transparency and public verifiability. Therefore, individuals can verify whether the actions of
another individual are in accordance with their morals even without revealing their identity. How-
ever, it is observed that there are different types of BC [203] (e.g., permissioned, permissonless), in
which each type follows a specific trustmodel, making it necessary to evaluate these different flavours
with respect to trust modeling.

Trust is a fundamental aspect of any cooperative environment and difficult to obtain since it may
rely on many non-technical aspects [88]. Also, process of building trust between entities has no re-
lation to a specific technology, and several non-technical and specific aspects of each organization
are required. BC has a role of a “trust-enabler” in this context, providing transparency between coopera-
tive organizations and thus possibly increasing trust-levels based in their interactions. However, it is not
possible to quantify the role of BCs as a trust enabler, being not possible to determine a “probability”
in which the use of BCs is a determining factor in ensuring trust between organizations. The role of
BCs in building trust has been studied by [87], in which the authors present solutions on how these
conflicting notionsmay be solved and explore the potential of BCs technology for dissolving the trust
issue. According to [191, 246], the main characteristics of trust are defined as:

• Dynamic: as it applies only in a given time period and maybe change as time goes by. For
example, a history of security data sharing between twoormore companies does not guarantee
that these companies will always share data at any time. Trust can only be built during a time-
frame.

• Context-dependent: the degree of trust on different contexts is significantly different. For
example, organization A may share threat indicators but may not disclose actual malware in-
telligence due to several factors (e.g., legal issues). Thus, trustmay exist between organizations
A and B only for sharing “threat indicators” context.

• Non-transitive: if organizationA trusts organizationB, andorganizationB trusts organization
C then organization A may not trust organization C. However, A may trust any organization
that organization B trusts in a given context.

• Asymmetric: trust is a non-mutual reciprocal in nature. That means if entity A trust organi-
zation B, then the statement entity B trusts entity A is not always true.
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Among the various (non-technical) facets of trust, in the cooperative platform it plays a crucial
role. This has been demonstrated in different e-commerce studies [110, 135], where online shoppers
must necessarily rely on the functioning mechanism of the online store to make the purchase (i.e., ,
use the credit card in a potentially unknown online store). These studies suggest to measure trust as
the belief that a platform is honest, reliable, and competent.

Mapping these dimensions to BCs, a permissioned deployment model with a consensus neces-
sarily open to the participation of all members within the cooperative defense, meets these require-
ments. The capability to create an immutable, consensually agreed and publicly (within the context)
available record of transactions is seen as an enabler of trust in the platform [87]. In addition, the
definition of rules between participants through SCs would allow for all parties involved to verify the
execution of the code that defines the cooperation. It is important to note, however, that the algo-
rithmic trust is not limited to the correct functioning of the algorithm, but also includes a variety of
socio-technical factors, such as its formal and legal correctness that goes beyond any technical solu-
tion.

Information disclosed in this cooperation network (i.e., the cooperative defense) should not be
disclosed to the general public, but kept within the alliance. It is important that all members par-
ticipate in the BC consensus on an equal basis, preventing members from e.g., having the ability to
censor certain transactions. Finally, BC allows to build a reliable and robust platform for signaling
DDoS threats in a transparent and verifiable manner, but it does not cover all the security needs of
such platform. For example, while transparency favors a trust-free platform, it is needed to strike a
balancewith confidentiality requirements of eachmember in order to securely exchange information.
Thus, data exchange should be done off-chain through an encrypted data channel (e.g., blacklisted ad-
dresses signed by the sender) via, for example, the Inter Planetary File System (IPFS) [17], ensuring
the confidentiality as well as the integrity of the attack information based on a per-message signature
bundled with the attack information.

2.6 Reputation Tracking andManagement

Reputation and incentive-based mechanisms have been widely explored for decentralized systems.
However, the BC introduces a novel way to decentralize trust creating a certification infrastructure
that records all traces of transactions, allowing users to look up and record histories of transaction
outcomes. By relying on the public ledger to form reputation scores and reward contributors, rep-
utation and rewards of users are tightly coupled to their actual network activity. Furthermore, BC
provides the underlying structure towards a financial reward scheme through cryptocurrency. This
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currency represents an incentive to behave reputable, if actions are rewarded accordingly. Financial
rewards and reputation can be treated independently or combined.

While providing many benefits, a cooperative defense also poses many challenges. For example,
why such organizations should help each other. In a competitive environment, trust needs to be es-
tablished. Solely relying on voluntary contribution (i.e., , accepting defense requests) creates a favor-
able environment for free riding peers (consuming resources without contributing). This situation,
and the social dilemma that the business partners find themselves in is illustrated in Figure 2.11. First,
the attack target publishes malicious IP addresses. Second, multiple mitigators adjust the configura-
tion of their network devices to filter and drop the malicious packets. This second step is referred to
as the actual “mitigation service”. In a third step, the attack target evaluates the effectiveness of the
mitigation service.

false-reporting free-riding

Collaborative
DDoS defense

Mitigators Target domain

1. publishes IPs
2. receives notifcations
and blocks IPs

3. approves work

Figure 2.11: Social Dilemma of False-reporting and Free-riding

Areputation schemeallows contributors and consumers of thenetwork to rate entities that request
protection in a cooperative defense. These systems have already been proven useful for e-commerce
websites to incentivize peers to contribute with relevant information and establish fairness among
peers. Moreover, similar social dilemmas exist in other research areas, e.g., crowdsourcing [264].
Even in large Peer-to-Peer (P2P) networks, peers maintain lasting business relations and transact re-
peatedly [251]. This increases the potential benefit of such type of systems in P2P related domains.
InMobile Ad-hocNetworks (MANET), researchers also identified the same need, to provide incen-
tive and credit-based mechanisms for cooperation among peers [59, 105]. Thus, incentive or reward
mechanisms are required. Therefore, this Section emerged from a literature review about reputation
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and reward schemes in P2P and BC networks, in order to gather information about how to design
such as system for cooperative DDoS defense.

2.6.1 Reputation Tokens

Electronic tokens are a common way to represent reputation. Liu et al. propose an identity and rep-
utation management system on Ethereum [131]. A reputation coin termed RpCoin can be earned
by completing tasks, which is like reputation itself, a non-transferable coin. The authors define two
different types of tasks:

1. The reputation task contains a reputation claimbeneficial to thepublisher. All taskparticipants
cast a binary vote. Votes corresponding to thefinal result of the taskwill increase the reputation
of the voter. The reputation of the task publisher is only increased if the result of the voting is
positive.

2. The incentive task is used to discipline the peers. Without these tasks, the system is vulnerable
to ballot stuffing and speculation of voting peers about final results. Therefore, these incentive
tasks contain a negative claim about another peer in the system. The voting rules are similar to
the reputation task but voters are rewarded for detecting fraudulent peers.

Reputation and reward are omnipresent in academia, citations and degrees can be interpreted as
indicators for relevance. Sharples andDomingue analyzed thepotential ofBCs for educational record
management [224]. In the educational economy, credits and degrees are stored in the BC.This econ-
omy is fueled by Kudos, an educational reputation currency. In comparison toRpCoins, Kudos is en-
visioned to be traded according to rules enforced by SCs. Concrete projects to realize such a system
have already been undertaken in the Ethereum community.

Further, from an academic point of view, theWork.nation project is designing a similar infrastruc-
ture for decentralized portfolio management and skill attestation for working professionals [254].
Contributions of work during projects are verified by team members and the transparent system al-
lows for rapid team building based on attested skills. The proof of concept is built using Ethereum.

As of another example targeting the decentralized prediction market, Augur is used to weight the
reports about real world events [185]. Much of the theory behind Augur was developed in Sztorcs
work on Truthcoin [179]. A prediction market in Truthcoin is called “oracle corporation” and con-
sists of a customer and an employee layer with different currencies. Reputation is represented by
VoteCoins (VTC) and is the currency transacted on the employee level. Another coin (called Cash-
Coin) on the customer level is solely used to buy/sell shares of an expected outcome. The purpose
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of prediction markets is to forecast outcomes of real world events based on share prices. The market
price of these shares reflect the expected probability of the outcome. VTCs are tradeable between the
employees of the oracle corporation, but the total supply of reputation tokens in the system is fixed.
VTCs are gained when a report about a real-world event is consistent with the consensus and lost
otherwise. Only reputation owners can create reports about such events. VTCs are also withdrawn
if the user does no longer participate in event-reporting. In such a case, the voter can maximize its
utility by selling the VTCs, because they are liability as much as asset.

The economy of oracle corporations and the other examplesmentioned above show, that a (trade-
able or decaying) coin can be a meaningful abstraction for reputation. Like cryptocurrency, accu-
mulated reputation is valuable and can indicate trustworthiness. However, these signals have to be
treated with caution, since users owning an exceptional amount of tokens or reputation either now
how to behave according to the rules, or found a way to cheat the system.

2.6.2 Event Reputation Factors

In the trust module proposed byMoinet et al. BC payloads trigger particular events [153]. Themod-
ule is applied to establish trust in decentralized sensor networks. Every event is associated with a
positive or a negative reputation factor, depending on the nature of the event from the originating
transaction. Then the cumulative reputation score can be calculated by stepping through all past
events of all blocks and process the associated reputation factors. Moinet et al. use an exponentially
decaying function to present recent events more strongly (reputation decay). With this approach,
the required minimum reputation of an agent to execute a specific action can be calculated based on
the reputation factors. Theseminimum requirements can be designed trust defaultive for small sized
networks and scale well with network size. A practical benefit of using events for reputation aggrega-
tion is that common BCs and SC languages have built in support for event management (e.g., events
in Ethereum or Hyperledger Fabric chaincode event listeners).

2.6.3 Reputation Thresholds

In mobile crowd-sensing, workers smartphone sensors are used to aggregate knowledge. The rep-
utation can indicate reported measurement data quality and help to validate data [58]. Zhang and
van der Schaar propose a threshold-based incentive protocol as seen in Figure 2.12. This system is
designed to be robust against “false-reporting” and “free-riding”.

The incentive protocol works like a state machine. Assume a newly activated user starts with a
reputation θ at the social norm threshold hk. At the end of each time period the requester evaluates

51



AC T I V E

I S O L AT E

L

hk + 1

hk Θ < hk

Θ ≥ hk

a = La = H

hk - 1

0

a = L

Figure 2.12: Threshold-based Reputation Model for Crowd-sourcing Applications [264]

the action (a) of the user. If the service requester is satisfiedwith the action, the evaluationwill result
in a = H and the user is given one additional unit of reputation (θ = hk+ 1). If the task is not solved
at the end of the time period, then the service requester rates a = L and one unit of reputation is
deducted from the user. We can assume ex-ante payment and thus a truth-telling requester.

As long as the users reputation (θ) is in the active region above the social norm threshold (θ >=

hk), the user is allowed towork and actionswill be evaluated by the requester. In this active region the
worker need to be in compliance with the social norm. Still, whenever θ = hk and a = L, the user
will be forbidden to solve tasks and its reputation will be reset. An isolated user receives one unit of
reputation each time period and automatically builds up reputation over hk time periods. Then, the
user is reactivated and its actions are evaluated. Theusers reputation is again adjustedby the requester
from this point onward.

2.6.4 Multi Signature Transaction (Multi-Sig)

As described in the previous section, the social dilemma still exists without the assumption of ex-ante
payment. On the one hand, the requester of the service may not confirm the job and refuse to pay
the requested (free-riding). The requested on the other hand would rather pretend to show effort in
order to minimize costs (false-reporting). Contractual agreements to ensure the order of payments
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and voting rights can be seen as a solution to mitigate this dilemma. However, malicious requesters
might still rate untruly.

P

R

P

R

DP

DR + p

DP + p  

DR

Figure 2.13: MAD (Mutual Assured Destruction) Transaction: Price (p) is Locked Inside the
Contract until User (U) and Provider (P) Agree to Payout [116]

ASCprotected by amulti-sig schema presents another solution tomitigate the same problem (see
Figure 2.13). Considering that a service provider (P) and requester (R) both pay a deposit (DR and
DP). Additionally, the requester has to pay the service price to the service provider. Then, fundsDR

andDP are protected with the Multi-sig, which means that they can only be spent if all parties agree.
Kopp et al. call this concept Mutual Assured Destruction (MAD) transaction and use it to build a
decentralized file storage with financial incentives [116]. As both parties store a safety deposit in the
contract, they both have the incentive to resolve the transaction and retrieve the locked funds. Again,
under the assumption of rational agents who want to retrieve the deposit, this contractual agreement
can reduce counter-party risks. After the successful termination of the contract, the service provider
receives the price (p) for the service and both parties retrieve their deposits.

2.6.5 Anonymous Feedback

Some applications require the reputation system to be privacy preserving [214]. In e-commerce or
anonymousmarketplaces [228], itmight pose an issue that the producer knowswhich consumer gave
aparticular bad rating. Also, anonymous feedbackmechanisms allow for honest feedback and remove
the bias towards positive ratings [101]. An anonymous reputation system is not a contradiction since
reputation can also be bound to temporary pseudonyms [58]. Schaub et al. designed a BC-based
trustless reputation systemwhich preserves the privacy and anonymity of the party giving the rating.
This is achievedwith blind-signatures on key pairs created for each transaction. In the end, the service
provider does not know from whom he received the rating. This process is illustrated in Figure 2.14.

53



3. verify tx 5. unblind
     and verify ttx

6. tx and wait

s c

1. setup ( tx ) :

                             Private key for tx rating

                                                 Public key for tx rating

Public key of      
service provider      

2. get_token (          , tx )
blinded

blinded blinded

4. ttx = issue_token (         ) = sig (         )

7. publish_review ( s,         , ttx, r, sig ( s,         , ttx, r ) )

Figure 2.14: Anonymous Feedback with Blind Signatures [214]

First the consumer (c) prepares a public/private key pair for the transaction. Before the transac-
tion happens, the consumer requires a blind signature on the public key for that transaction from the
service client (s). It is not possible for the service client to relate the public key to either transaction
or consumer at this point, since only the client knows the secret and random part of the blinded key.
This randomnumber allows the client to verify and unblind the token in combinationwith the public
key of the service client. After a successful service delivery the consumer is advised to wait for some
time until other consumers require service. Otherwise, a single feedback could still be linked to a
single consumer. In the end, the consumer publishes a rating (r) about the service client (s) to the
BC. This rating is valid because the blinded token was issued and made public by the service client
beforehand and there is only one rating per token. The token from the producer gives the consumer
the right to give feedback to a transaction. However, neither producer nor other clients know the
identity of the consumer.

Limited token issuance for s can be an effective method to fight against ballot stuffing [214], be-
cause according to Cai and Zhu (2016) in [30], “this creates a trade-off between rating and profit for
the seller” s. For every token, s can either choose to use it for a real transaction or pay the opportu-
nity cost and use it to inflate its own reputation [214]. The opportunity cost equals to the unrealized
profit from a legit sale of goods or services. Even though a limited supply of tokens can incentivize s
to use the tokens for genuine purposes, s can never be completely discouraged from “buying” its own
reputation [214].
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2.6.6 Incentives to Vote

If the feedback in a reputation system is notmandatory, itmight be required to provide the rater an in-
centive to leave feedback. Otherwise, peersmight rather not give feedback. Carboni’s feedback-based
reputation system on top of the bitcoin BC incentivizes the rater with a voucher to give feedback for
a transaction [31]. Figure 2.15 depicts the situation.

Consumer:                                

end with
feedback

submit
order

feedback?

prepare payment P
Producer:

propose
payment Plinked to service S

transact
payment P

use
service S

sign
a voucher

propose the voucher
to be cosigned

end with       
no feedback       

n

y

cosign
voucher

y

transact
voucher

satisfied?

n

Figure 2.15: The Cosigned Voucher Creates a Monetary Incentive to Leave Feedback [31]

The voucher is linked to the past payment (P) and contains a vote fee and an incentive. The vote
fee is a proportional share of the price (P) and represents the reputation increase. Pricier transac-
tions result in higher reputation increase for the producer. The incentive is an amount chosen by the
producer. When a consumer leaves feedback, the reputation of the producer increases by the vote fee
and the consumer is rewarded with the incentive.

2.6.7 Insurance Models

Trust can be established based on reputation information [101]. A trust model helps the user to take
decisions in concrete situations [127]. A reputation model however is more holistic, as it includes
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the view of all peers in the system about a given user [101]. Nevertheless, reputation and trust are
closely related concepts.

Some trust models work in a similar fashion to insurance models. To better understand these
models, the example of a supply chain with upstream suppliers and downstream customers is help-
ful. Peers trust each other up to some amount of money. In TrustDavis for example, peers can obtain
weighted references from their neighbours [57]. If a user gives a reference, she would become liable
to pay the reference price to any customer, if the supplier she gave the reference to cannot deliver the
product or service. These references can be modeled as edges in a trust graph. In a trust graph each
edge represents the maximum amount of money, that the originator is liable for or trusts the target
of the reference with. A similar approach has been presented recently by Litos and Zindros [127].
Trust and reputation are not directly linked to rewards, but can be expressed inmonetary terms using
such schemes.

InLitos andZindros, indirect trust is derivedby relyingon thepeers that are trustedbyyour trusted
peers (i.e., transitive trust, whereas if a trusts b and b trusts c, then a trusts c). If an intermediary in the
trust chain defects, she is free to either take a loss or steal the amount from a friend in the trust chain.
Since this game can be played transitively the financial loss can be carried over to other trusted peers.
The maximum trust (and equally potential maximal loss) of two peers is limited by the maximum
flow in the trust graph between them.

Such a network of liabilities can serve as basis for concrete financial decisions. In a DDoS cooper-
ative defense scenario, the target domain could assess if it is possible to trust a mitigator domain to
solve a task, given the target domain can estimate the expected mitigation costs correctly. However,
the reputation of a peer cannot be directly derived with this scheme, as reputation is mostly defined
through a more collective view [101].

2.6.8 Reputation Engines

Besides reputation aggregation protocols, another important aspect of a reputation system is the rep-
utation computation engine, where scores andmetrics are calculatedbasedon the inputs [101]. Most
reputation systems in the P2P space are single-dimensional, meaning that only one factor (e.g., num-
ber of contributions) serves as input for the system [60]. For the output metric there are a broad
range of different models. Surveys and classification about the different types of reputation engines
are presented by Jøsang et al. in [101] and Schlosser et al. in [218]. The presented overview is mainly
basedon these twoworks, with an emphasis on engines that seemsuitable for the designof reputation
systems in cooperative DDoS defense.
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• Probabilistic Engines: The reputation score is mostly accumulated linearly, exponentially
or calculated with help of probabilistic density functions (e.g., the Beta reputation system)
[13, 20].

• Fuzzy Engines: The peers behavior can be analyzed through fuzzy queries on the data stores
holding this reputation, storing multi-dimensional reputation data [101].

In probabilistic engines, reputation is expressed as a probability. The expected value of the beta
distribution forecasts the probability of a positive, future event x, based on the past binary events x
and x̄. The binary events represent positive and negative historical reputation ratings. The expected
value of this distribution can be interpreted as a reputation score [13]. One particular example of
a Beta reputation system applied to BC is found in the Topl protocol [42]. Topl is a proposed BC
protocol to create profit sharing agreements with producers in emerging and frontier markets. The
protocols reputation engine “Divine” builds upon a Beta reputation engine that facilitates due dili-
gence and reduces counter-party risk [112].

Thepeersbehavior canbe analyzed through fuzzyquerieson thedata storesholding this reputation
data. A reputation score is stored in tuple-form. rep = (a, b, i, d, v) is the rating from a about b,
in interaction or transaction i, on dimension or skill d, with v being the actual rating value (e.g., in
range [−1, 1]). With a fuzzy query q = (a, _, _, quality, _) an agent can retrieve and aggregate all
ratings concerning the quality dimension from peer a, to any other peer (“_” is the wildcard) in any
interaction and with any score value. Insights on the different interaction dimensions like quality,
price and service time can be gained by executing and aggregating the results of such queries on the
data store.

2.7 Security Basics and Blockchain Security

This section revisits basic security concepts that permeate the system proposed in this thesis. Sub-
section 2.7.1 presents fundamental security concepts. Subsection 2.7.2 presents how basic security
concepts are used to identify and classify vulnerabilities in SCs. Lastly, Subsection 2.7.3 presents an
overview of automated tools for identifying vulnerabilities in SCs.
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Figure 2.16: The CIA Triad. Adapted from [80]

2.7.1 Confidentiality, Integrity, and Availability

The Confidentiality-Integrity-Availability triad (also known as the CIA triad) is one of the funda-
mental concepts of information security. As Figure 2.16 shows, it aggregates three major principles
of information security: confidentiality, integrity and availability [80].

• Confidentiality: restricted access to particular information or functionality by only people
who are authorized.

• Integrity: implies that data ismanaged andupdated correctly and, therefore, remains accurate
over time, i.e., information is not changed and its source is authentic.

• Availability: possible to access the data or functionality any time needed.

While directly DDoS attacks deplete the availability of the targeted service, the system that is pro-
posed in this thesis also needs to address the CIA triad to prevent the system remedying DDoS from
causing more significant impacts than the DDoS attack itself (for example, releasing confidential in-
formation from the victim to third parties). In this sense, confidentiality is addressed by the need to
maintain information about the relationship between the target and private collaborative mitigator,
ensuring confidentiality between the peer. Integrity refers to the impossibility of altering data once
it is sent by a verified source, property whose BC-based platform can offer by default. Likewise, it
occurs with availability since a BC-based system is fully replicated amongmembers of the collabora-
tive defense, and theymaintain a synchronized version of the current state of the network. Therefore,
one of the nodes’ failure does not imply in Byzantine failures of the collaborative defense but only in
isolated nodes.
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2.7.2 Security of Smart Contracts

One of the first systematic reviews of Ethereum and Solidity vulnerabilities was published in 2017
by Atzei, Bartoletti, and Cimoli [12]. Overall, they identified and described 12 vulnerabilities divid-
ing them into three categories: Solidity vulnerabilities (call to the unknown, gasless send, exception
disorders, type casts, reentrancy and keeping secrets), vulnerabilities related to Ethereum Virtual
Machine (immutable bugs, Ether lost in transfer and stack size limit) and general BC vulnerabilities
(unpredictable state, generating randomness and time constraints).

In the same year, another classification of vulnerabilities in Ethereum SCs was proposed by Al-
harby and van Moorsel [5]. However, their study’s scope included not only security vulnerabili-
ties such as transaction-ordering dependency, timestamp dependency, mishandled exceptions, reen-
trancy, criminal SCs, and the lack of trustworthy data feeds, but also codifying, privacy, and perfor-
mance issues.

Similar to Atzei et al. [12], Praitheeshan et al. [190] distinguish general BC vulnerabilities from
the ones typical only for Ethereum and Solidity SCs. However, they put Ethereum and Solidity vul-
nerabilities together and added one more group of vulnerabilities – general software security issues.
Overall, Praitheeshan et al. distinguishes three groups of SC vulnerabilities. The first one consists
of BC related vulnerabilities and includes immutability, sequential execution, complexity, transac-
tion cost, and human errors. The second one contains general software security issues (e.g., buffer
overflow, command injection, poor usability). Finally, the last group is a list of Ethereum and So-
lidity related vulnerabilities, including reentrancy, transaction-ordering, timestamp dependency, ex-
ception handling, call stack limitation, integer overflow, and underflow, unchecked and failed send,
suicidal contracts, unsecured balance, use of tx.origin, unrestricted write and transfer, non-validated
arguments, greedy and prodigal contracts, and costly gas patterns.

Chen created the most extensive list of vulnerabilities in Ethereum SCs [35], which contains in
overall 44 security issues (six of them are marked as already eliminated). The vulnerabilities are
distinguished by their location in Ethereum’s architecture (application layer, data layer, consensus
layer, network layer, or environment layer). Besides, Chen et al. divided the vulnerabilities into dif-
ferent categories depending on their cause, resulting in four primary categories include vulnerabil-
ities related to SC programming (e.g., reentrancy, integer overflow and underflow, use of tx.origin),
to Solidity language and toolchain (e.g., Type casts), to Ethereum design and implementation (e.g.,
timestampdependency and generating randomness) and, finally, to human, usability andnetworking
factors (e.g., weak password, broken access control). At the time of writing, this is the most compre-
hensive overview of Ethereum SC vulnerabilities.
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Dingman et al. suggested another approach to the classification of vulnerabilities in EthereumSCs.
[63]. They applied theNISTBugs Framework [168] to a list of known Ethereum smart contacts vul-
nerabilities. TheNISTBugs Frameworks is based on the data fromCommonWeakness Enumeration
[53], its clustering Software Fault Patterns, Semantic Templates, and other sources and allows unam-
biguous classification of software weaknesses [168]. In order to map SC vulnerabilities to the NIST
Bugs Framework, Dingman et al. . analyzed their cause, attributes, and consequences. As a result, the
study presents a master list of SC vulnerabilities withmatching categories and classes from theNIST
Bug Framework [63].

Finally, studies focus on describing the most severe vulnerabilities instead of providing a system-
atic classification, such as Luu et al. . [137] discusses four vulnerabilities that can be used to ma-
nipulate SCs and gain profit by malicious actors. These vulnerabilities include transaction-ordering
dependence, timestamp dependence, mishandled exceptions, and reentrancy. In addition to these
four security issues, Dika andNowostawski [62] describe other severe vulnerabilities, such as the use
of tx.origin, call stack depth limitation, external calls, unchecked send, DoS with unexpected revert,
blockhash usage, and gasless send.

2.7.3 Tools for Automated Security Audit

In general, three major types of automated security analysis can be distinguished: static analysis,
dynamic analysis and formal verification. In accordance with the first approach, the programming
code is scanned for vulnerable patterns without its execution. In contrast to this method, dynamic
analysis is performed in a run-time. This approach simulates the behaviour of an attacker who is
trying to find vulnerabilities by insertingmalicious code and providing input to the code. Due to this
technique, dynamic tools for automated security audit can identify vulnerabilities missed by static
tools. Finally, formal verification methods rely on mathematical formal methods and theorems for
the programming code validation and the prove of vulnerabilities [190].

All the previously described analysis types can deploy different strategies. For example, the static
analysis can be performed on the bytecode using symbolic execution, control flow graph construc-
tion, pattern recognition and decompilation or direct on the Solidity code by rule-based analysis and
compilation. The dynamic analysis always executes the bytecode. The possible strategies include
the run-time execution trace, transaction graph construction, symbolic analysis and true positives
and false positives validation. Besides, the formal verification analyses the bytecode with the help of
theorem provers and program logics construction and the Solidity code by translating it to a formal
language [190].
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The overview of tools is presented in Table 2.4. The first tool for automated security analysis of
SCs is presented by Luu et al. [137] in 2016 and is called Oyente. It performs static analysis and de-
ploys a symbolic execution strategy. Symbolic execution (also called abstract interpretation) was in-
troduced byCousot andCousot [50] in 1977. This strategy regards variables as symbolic expressions
and checks if path conditions are satisfiable. As a result, Oyente is able to detect four types of vul-
nerabilities: transaction ordering, timestamp dependency, mishandled exceptions and reentrancy.
When the tool was run on the 19’366 existing at that time Ethereum SCs, at least one vulnerability
was found in 8’833 contracts which is about 46% of the total number [137].

Table 2.4: Comparison of Tools for Automated Security Audits

Oyente Mythril MythX Securify Securify
2.0 Remix MAIAN Manticore

Analysis
Type Static Static Static Static Static Static Dynamic Dynamic

Strategy Symbolic
execution

Symbolic
execution

Symbolic
execution

Formal
verification

+
Symbolic
execution

Formal
verification

+
Symbolic
execution

Formal
verification

Symbolic
analysis

+
Concrete
validation

of
true/false
positives

Symbolic
analysis

Number of
Vulnerabilities
in Scope

4 12 37 18 38 21 3 12

Command
Line
Interface

✓ ✓ ✓ ✓ ✓ ✓ ✓

WebGraphical
User Interface ✓ ✓ ✓ ✓ ✓

Free of Charge
Usage ✓ ✓ ✓ ✓ ✓ ✓ ✓

Another tool using the symbolic execution is Mythril [158]. It supports a security analysis of SCs
not only in Ethereum, but also in Tron, Quorum, Vechain, Roostock, Hedera, and others [47]. The
tool scans the bytecode and is able to detect a wide range of vulnerabilities including write to arbi-
trary storage location, arbitrary jumpwith a variable of function type, delegate call, weak randomness,
deprecated opcodes, unprotectedEtherwithdrawal, exception handling, reentrancy, integer overflow
or underflow, DoS with failed call, suicidal contracts and unchecked return value. Unlike Oyente,
Mythril does not have a Web Graphical User Interface (Web GUI) and can be only run on the com-
mand line [158]. However, there is also a professional version ofMythril calledMythX. In contrast to
Mythril, it is not free of charge. Besides, it covers a wider range of vulnerabilities thanMythril [158].
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The list of 37 supported security issues can be found in the SC Weakness Classification Repository
[47] created andmaintained byMythX team. Moreover,MythX can be integrated directly into devel-
oper tools such as Remix and Truffle which allows to perform security analysis continuously during
the whole life-cycle of the project [46].

Another tool for automated security audit of Ethereum SCs combines symbolic execution with
formal verification [245]. Securify was developed by ETH Zürich and its start-up ChainSecurity
[34]. Its first versionhas aWebGUI[34] anddetects 18different vulnerabilities including reentrancy,
transaction-ordering dependency, exception handling and arguments validation [245]. However, in
January 2020, a second version of Securify [221]was announced [244]. It supports 38 vulnerabilities
and is available only on the command line [221]. The new list of vulnerabilities is primarily based on
the SC Weakness Classification Register [47] maintained by MythX team and ConsenSys. Besides,
Security 2.0 analyses Solidity code and not bytecode as the previous version. Moreover, according to
the developers, it is more precise and scalable than the original tool [244].

Automated formal verification is also offered by a built-in Solidity static analysis tool inRemix IDE
[62]. At the time of writing, its latest version (0.10.1) was able to identify seven security issues, five
gas-related issues, one ERC20 issue and eight miscellaneous vulnerabilities. Thus, the tool detects
overall 21 different vulnerabilities [196]. In contrast to previously discussed tools, MAIAN [165]
performs dynamic analysis. It deploys symbolic analysis and concrete validation of true and false
positives. Instead of supporting a wide range of security issues, MAIAN focuses on three vulnerabil-
ities: prodigal, greedy and suicidal contracts [166].

Another dynamic tool for automated security audit of SCs was developed by Trail of Bits and in-
troduced byMossberg at al. [157] in 2019. Manticore [242] relies on symbolic analysis of bytecode.
It does not have a Web GUI but can be run from the command line and with Python Application
Programming Interface (API) [242]. According to the information on the command line during the
execution (see FigureX),Manticore detects 12 vulnerabilities including integer overflow, reentrancy,
delegatecall and suicidal contracts.

Finally, some frameworks such as F* Framework [19], formalisation with Isabelle/HOL proof as-
sistant [6] andFEther [259] implement formal verification analysis. These frameworks do not search
for vulnerabilities as previously described tools but define correctness and safety properties for SCs
and, then, prove them. Besides, the frameworks are semi-automatedwhichmeans that a lot ofmanual
work is required for their set-up [190].
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2.8 KeyObservations

ThisChapter provided the theoretical basis on the core concepts involved in the thesis. Thus, aspects
of BC and SC and reputation assessment were introduced in detail. Understanding these concepts
is fundamental, and it is fundamental to compare the solution proposed in these theses with state
of the art in collaborative defenses, and thus, verify under the proposed questions their benefits and
drawbacks. For example, while BC and SC offer a relatively simple platform for the construction
of a collaborative attack signaling solution, there are concerns regarding the confidentiality of the
platform, considering transparency as one of the fundamental characteristics of BC.

Another relevant aspect of the platform is related to the temporal aspect of collaborative defense:
the latency of communication between requester (victim of the attack) and requisite (cooperative
mitigators). According to [265], negotiation must occur in the order of minutes for the effective re-
stabilization of their services. Therefore, in addition to restrictions on the confidentiality of the data
exchanged between the victim and the mitigator, a restriction on the negotiation time is imposed.
This makes permissionless BCs like Bitcoin not viable due to the relatively high time for creating
blocks as well as the impossibility of creating elaborated contracts between the parties.

Consensus mechanisms are the main component of a BC, determining aspects of reliability in the
validators and performance aspects. Considering the requirement to restrict information access to
a selected audience, and to make the exchange of information between the parties involved occur
promptly, the Chapter analyzed the different consensus mechanisms available in BC that have been
described in different stages. The first stage refers to the beginning of distributed systems, and the
need to make the replication of information across different sites were resilient to failures. The sec-
ond step in the first era of consensus mechanisms considers the possibility that some could even
act maliciously, supporting Byzantine failures of a portion of the network’s nodes. The explosion of
BC-based applications has also encouraged the development of various consensus mechanisms to
balance performance and confidentiality requirements in different ways, meeting the needs of these
different applications. Thus, the Chapter evaluated these algorithms proposed in the second era in
permissioned and permissionless, in which the first allow the selection of validators and the second
area based on a competitive process seeking to elect validators within the network.

This Chapter also introduced one of the main elements facilitating a collaborative defense based
onBC - SCs. As introduced in subsection 2.5, the combination of permissionedBCwith the collabo-
rative logic implemented in SCallows for transparency in the collaborative logicwithin the context of
the alliance, as well as the verifiability of reputation and exchange of incentives. While BC and SC are
relatively new concepts concerning reputationmanagement and incentives in P2P systems, the latter
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is of equal importance. In addition to the need to reduce technical complexities in the deployment
and operation of a collaborative defense, there is a need for incentives for third parties (i.e., mitiga-
tor) to perform mitigation services using their infrastructure. Considering that such a task typically
incurs operational expenses, there is a need to add an incentive scheme to cover expenses related to
this mitigation service. As a consequence of the addition of incentives covering such expenses, there
is a need to verify the participants’ reputation as a way to reinforce the incentive to good behavior
within this alliance.

Therefore, this Chapter introduced reputation and incentive-based mechanisms considering its
application in a BC-based platform, which introduces a novel way to decentralize trust creating a cer-
tification infrastructure that records all traces of transactions, further allowing participants to verify
and record histories of transaction outcomes. Furthermore, BC provides the underlying structure
of a financial reward scheme through cryptocurrency. This currency represents an incentive to be-
have honestly if actions are rewarded accordingly, whereas those financial rewards and reputation
can be treated independently or combined. Therefore, the main challenges listed in collaborative
defenses can be addressed by a BC-based solution, including incentives and tracking member repu-
tations within a specific context, or regional alliance between participants aligned under regulations
or legislation in compliance. However, it is essential to note that this Chapter did not cover aspects
related to the effective mitigation of attacks. Autonomous systems implement their own specific and
heterogeneous technology within their network management system. Thus, the Chapter focused on
the aspects mentioned above of the collaboration platform.
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3
State-of-the-art of Cooperative NetworkDefenses

On the one side, the points closest to the victim present a higher concentration of traffic in a similar
way to a funnel, making it relatively easy to detect whether aDDoS attack is happening due to sudden
increases in inbound traffic. On the other side, devices sending attacking traffic represent the source
points scattered throughmultiple regions, impairs the detection of an attack unless a large number of
attack flows are initiated from that specific source.

Blockchain provides an interesting alternative toward a cooperative defense by offering a platform
relatively simple to deploy and operate (in contrast to existing solutions), able to increase trust levels,
and provide means toward the exchange of financial incentives. Therefore, this chapter provides an
overview of the existing mechanisms following the classification described in Section 3.1 to list how
the challenges listed in different dimensions described in this thesis are addressed by the existing
solutions.

3.1 Classification ofDDoSDefenseMechanisms

In source-based mitigation, the defense system tries to identify malicious outgoing traffic at an AS
(Autonomous System) and block the attack traffic upon detection. In contrast, destination-based
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mitigation analyzes incoming traffic at the edge routers and access routers of the attack-target AS to
filter the traffic before it reaches the AS [265]. Both perspectives have in common that they only
consider individual, isolated ASes, either on the attack’s source or destination side. This gives them
the characteristic of a centralized defense approach since no coordination among the ASes involved
in the overall attack exists. This gives them the characteristic of a centralized defense approach since
no coordination among the ASes involved in the overall attack exists.

Furthermore, network-basedmechanismsaredeployed inside intermediatenetworks (i.e., between
source and destination AS), usually leading to high storage and processing overheads at the routers.
Overheadoccurs due to the need to infer trust values for the access routers by employing calculations,
decisionmaking, and trust negotiations among the routers to efficiently and effectively detect and fil-
ter the malicious routers is the ultimate goal of these mechanisms. Lastly, while previous approaches
(source-, destination- & network-based) may work without coordination and cooperation amongst
the various involved parties, hybrid mechanisms are deployed at multiple locations, and there are
coordination and cooperation between the locations. DDoS defense mechanisms are summarized
according to their placement as follows:

• Source-based: mechanisms deployed at the egress point, typically being difficult to detect
attacking traffic due to their highly distributed nature.

• Destination-based: traditional approaches and mechanisms deployed at the ingress point of
attacking traffic usually overwhelmed by attacking traffic.

• Network-based: deployed at intermediate networks involving statistical approaches to detect
ongoing attacks, or, when cooperative, based on trusted destination points (i.e., victims).

• Hybrid: involve a combination of all other mechanisms in a cooperative setup.

Furthermore, the study is based on a bibliographic review whereas data (i.e., works related to each
category) is obtained from sources indexed on IEEE, ACM, and Springer bases. Furthermore, works
are described and evaluated according to the categories presented in Section 2.2 of Chapter 2 (Dis-
tributedDenial-of-Service Defense). Then, works are according to their categorization form i.e., net-
work placement according to [265], and subcategories, as proposed in [151]:

• Architectural Types: on-premises (centralized or distributed), off-premises (distributed or
decentralized).

• Activity Types: proactive, reactive, passive.
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• CooperationDegree: autonomous, cooperative, interdependent.

Tomaintain this Chapter focused on the goal of discussing different approaches, the technical de-
scription of each work is presented in Appendix A. It is important to note that this method applies to
the first three placements: source-, destination- & network-based. As these do not support a holis-
tic view of DDoS attacks nor cooperating with various mechanisms, they provide support for hybrid
mechanisms. Therefore, such distinction is relevant because the hybrid category’s mechanisms may
or not be based on the functioning of these mechanisms in different locations on the Internet. The
comparison of hybrid mechanisms is based on the challenges described in this thesis:

• Technical: complexities of operation and deployment

• Social: concerning data privacy, integrity, and reputation management

• Economical: whether solutions provide support for incentives

• Legal: regarding the conformity across different legislation’s

As highlighted in [183, 265] the analysis of how works address challenges, enabling to verify the
advantages and disadvantages of the solution proposed in this thesis. Such an analysis also extends
the work of categorizing and classifying collaborative defenses done in previous surveys by explicitly
defining the road-map for broad adoption of cooperative defenses against large-scale DDoS attacks.

3.2 Source-basedDDoSMechanisms

Themechanisms presented in Table 3.1 are source-based approaches to decrease the attack footprint
at its origin. Advantages of these mechanisms are the low amount of traffic required to be analyzed,
the ability to stopanattack right at the source, easy tracingof the attackback to its origin and the ability
to dedicate more resources toward the mitigation efforts since the attack itself does not consume
many resourcesdue to its small footprint [152]. Thus,most often, they canbeplaced at a source’s edge
router of the local network or the access router of an autonomous system connected to the source’s
edge router. They are not entirely sufficient because (a) the attack’s source(s) can be distributed, (b)
the differentiation between legitimate packets and malicious is confusing, and (c) the motivation to
install such services is low since it is unclear who pays the services [265].

Source-basedmechanisms typically involve active approaches to traffic analysis aimed at identify-
ing patterns that lead to attacks. It is unanimous that stoppingDDoS attacks at the source is themost
efficient alternative (in contrast to network and destination-based approaches) to prevent other in-
termediate points and recipients from being overloaded. However, source-based mechanisms fail to
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obtain anoverviewof the attack,which is highlydistributed. Among themain challengesof themech-
anisms proposed in this category are the difficulty of identifying these patterns and the overhead in
terms of processing and storing information on network devices, whichmust actively compare traffic
patterns with attack patterns. The details of the works described are summarized in Table 3.1 (full
description of each work is presented in Appendix A).

Table 3.1: Comparison of Source-based DDoS Defense Mechanisms

Approach Architectural
Type

Activity
Type

Cooperation
Degree

Short
Description Year

MANANet [140] On-premises,
distributed Proactive Autonomous Reverse firewall that can cooperate with similar

MANANet-enabled routers 2020

D-WARD [150] Off-premises,
distributed Reactive Cooperative Distributed and cooperative DDoS detection and

mitigation system deployed at multiple sites 2002

MULTOPS [76] Off-premises,
distributed Reactive Cooperative Similar as D-WARD but optimizing the data

structure to alleviate the overhead on routers 2001

Lu et al. [136] On-premises,
centralized Proactive Interdependent SDN-based approach performing a statistical

inference on flows to detect early-stage attacks 2016

Priyadarshini et al. [193] On-premises,
centralized Reactive Interdependent SDN-based approach using a deep learning

model to detect attack patterns 2019

Yi et al. [260] On-premises,
centralized Proactive Interdependent

Provide support for collaborative tools by
accumulating (legitimate) host information to
prevent IP spoofing

2008

Soldo et al. [227] On-premises,
centralized Proactive Interdependent

Builds an in-memory ACL (white or blacklist)
based on coordinated, suspicious, traffic sent
by hosts

2011

Badis et al. [15] On-premises,
distributed Reactive Interdependent

Cloud detection system that relies on a cooperation
among hypervisors to detect malicious outgoing
traffic patterns

2015

Although the D-WARD [150], MULTOPS [76] and Badis et al. [15] solutions are cooperative,
they are not interoperable. Therefore, these cooperate between homogeneous instances of differ-
ent organizations but not between different solutions from different organizations. The degree of
cooperation is also reflected in the architectural type, resulting in off-premises operations as a dis-
tributed solution acting reactively (i.e., upon request in a master-slave mode) to install filters close to
the source.

In general, source-based mechanisms require the analysis of outgoing traffic patterns to compare
themwith attack patterns. In this sense, the need to reduce overhead in network devices becomes ex-
ceptionally relevant and evident in the analyzed works. Also, the advancement of recognition tech-
niques based on machine learning gains space combined with the offloading of management and
network functions for centralized servers (e.g., SDN and VNF). At this point, works such as Yi et al.
[260] and Badis et al. [15] can be highlighted in the use of these relatively new concepts to alleviate
the burden on the network infrastructure.
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3.3 Destination-basedDDoSMechanisms

Destination-based approaches toward DDoS mitigation (cf., Table 3.2) often face the challenge of
handling high traffic bandwidth arriving at routers. This leads to high resource usages on detection
andmitigation systemsdue to the overheadof analyzing the attack trafficnear to its destination [265].
Once in destination-based approaches attack traffic is untouched throughout its preceding route, re-
sources are wasted which could have been saved if the traffic would have been classified before. The
alternative of destination-based mitigation relies on block-holing and traffic shaping to prevent the
system from falling over.

The advantage of the late response to the attack traffic is that it is much easier to identify mali-
cious traffic based on its volume and destination[265]. However, in attacks involving thousands of
devices that individually do not spend large amounts of traffic, it is not easy to distinguish between
legitimate and malicious users. Another definite advantage is the direct incentives for the operator
of destination-based mitigation systems: By running such a system, they can directly protect hosts
within their AS from attacks, which represents an added value to all or their users. Following defense
mechanisms demonstrate different approaches tomitigateDDoS attacks in a destination-basedman-
ner. These mechanisms take place at the edge routers or access routers of the AS deploying them
[265].

Destination-based mechanisms are in a unique position to analyze the entire attack traffic since
they are close to the attack target. This can trace back the attack origins to better identify malicious
traffic and easily differentiate it from regular traffic. However, tracing back attack traffic to its origin is
not a straight forward process, since attackers often spoof their IP addresses, making it much harder
to find the actual origin [100]. IP Traceback approaches are divided into preventive and reactive
approaches [100]. The less common preventive approaches try to block packets originating from
spoofed IP addresses as a directmeasure againstDDoS attacks [100]. This is succeeded by examining
every packet arriving at the edge or access router of anAS,which canbecomequite resource-intensive
with the increasing DDoS attack volume.

While mechanisms deployed at the source do not have an overview of the attack, defense mecha-
nisms deployed at the target (i.e., target) are overloaded by volumetric attacks. In large-scale DDoS
attacks, destination-based approaches typically fall short on thepacket-level analysis to distinguish le-
gitimate users and attackers. Thus, there is an increasing demand for increasing the processing power
to analyze packets and compare them with recognized traffic patterns. However, there is the oppor-
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Table 3.2: Comparison of Destination-based DDoS Defense Mechanisms

Approach Architectural
Type

Activity
Type

Cooperation
Degree

Short
Description Year

MIB [29] On-premises,
centralized Proactive Autonomous Utilize information available on router’s MIB

groups IP, ICMP, and others for DDoS detection 2001

Pi [258] Off-premises,
distributed Proactive Interdependent Packet marking approach providing basis for

IP Traceback solutions 2003

Takemori et al. [238] On-premises,
centralized Reactive Autonomous

Intended for Personal Computers based on
a whitelisting of IP addresses whereas a daemon
verifies the system in non-usage periods

2008

HCF [99, 250] Off-premises,
distributed Reactive Interdependent Packet marking and filtering approach based on

the IP Traceback approach 2003

Yu et al. [263] Off-premises,
distributed Reactive Interdependent

Packet marking and filtering approach based on
flows’ variation instead of probabilistic or
deterministic packet marking

2010

Packetscore [111] On-premises,
centralized Reactive Autonomous Define scores on a packet-level to identify and

prioritize whitelisted sources 2006

HIF [182] Off-premises,
distributed Reactive Interdependent Edge routers keep a historic of IP addresses in

order to whitelist trusted sources 2003

FlowGuard [98] Off-premises,
distributed Reactive Interdependent Intended for IoT networks where edge routers

can detect and perform a coordinated mitigation 2020

Cziva et al. [54] Off-premises,
distributed Reactive Interdependent Traceback approach based on VNFs where a

domain can request to push VNFs for mitigation 2017

Cloud-based Protection [3, 43] Off-premises,
distributed Proactive Autonomous Cloud-protection services acting as a proxy to

analyze and filter potential DDoS attacks 2020

tunity for approaches seizing regular traffic (i.e., without bursts the network traffic) periods to derive
traffic patterns from legitimate users, creating whitelists.

Once an attack is detected, which is a common task to allmechanisms listed inTable 3.2, twodiver-
gent approaches are noted: IP traceback andWhite-listing. Traceback approaches rely on compatible
routers along the path for acting on malicious packets flagged at the destination. These mechanisms
are mostly interdependent and reactive, i.e., they can act autonomously when there is no compatible
router and request compatible routers tomitigate malicious packets by pushing filters near the attack
source (e.g., Pi [258], HCF [250], Yu et al. [263], HIF [182], Cziva et al. [54], and [98]). There are
discussions about these approaches’ practical effectiveness while the technical difficulties (i.e., het-
erogeneous network equipment) and social difficulties with the need to rely on third-party requests
changing the traffic [183, 265].

Whitelisting-based mechanisms feature variations of traditional in-house tools, such as Intrusion
Detection System (IDS), Deep Packet Inspection (DPI) systems. For example, HIF [182] stores a
packet history to identify in traffic patterns which sources are legitimate (and therefore white-listed).
Over a while, sources display constant traffic patterns without spikes in the traffic volume for short
periods, and it is possible to place these addresses as white-listed. In the event of an attack, white-
listed sources are prioritized. This same pattern appears in different mechanisms varying the under-
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lying technology and approaches toward an efficient use of hardware (e.g., Takemori et al. [238],MIB
[29], Packetscore [111]).

Destination-based mechanisms are similar to the source-based either done on the edge router or
at the target’s autonomous system. Nonetheless, most of the source and destination-based mecha-
nisms cannot accurately detect andmitigate the attack. While source-basedmechanisms do not have
an overview of the entire attacking sources, it is not straightforward to detect widely distributed at-
tacks. In the case of destination-based mechanisms, resources to detect and mitigate the attack are
typically overwhelmed by incoming traffic, which ultimately causes legitimate users to be prevented
from accessing services (i.e., the service is denied) due to the difficulty of detection systems in distin-
guishing traffic patterns from attackers or legitimate users.

In this case, the conventional alternative is to increase the capacity to detect and mitigate traffic at
the destination, which for many organizations, is not a feasible strategy as it requires a significant in-
vestment. In this sense, cloud-based services such as the ones provided by Akamai [3] or CloudFlare
[43] appear as a viable alternative, serving as a proxy to the destination and performing with a larger
pool of hardware and software resources. However, it is observed that despite havingmore resources,
there are some problems in the adoption of Cloud-based Protection Services (CPS):

• Security: organized in terms of confidentiality, integrity and availability as below:

– Confidentiality: incoming traffic is is directed to the protection service that acts as a
proxy. Thus, CPS pose a vulnerability for companies whose confidentiality of traffic pat-
terns is relevant for marketing reasons.

– Integrity: due to the centralization of traffic in the CPS, it is necessary to trust that the
CPS will not modify packets or send to other destinations.

– Availability: large traffic processing capacity ends up being diluted among the different
CSP customers. Therefore, since the CSP is a single organization (centralized or dis-
tributed), it is liable to suffer periods of unavailability in the event of large-scale attacks.

• Performance: concerns availability in the sense thatmore resources typically representsmore
traffic absorbing capacity. However, the efficiency of hardware and software is important to
determine performance in terms of Quality of Service (QoS). Like any traditional cloud ser-
vice, it is important to specify the service quality parameters in the Service Level Agreement
(SLA), so that even with the increase in the number of consumers, the QoS standards are
maintained.
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Concerning the technologies on underlying networking equipment, there is a tendency for vir-
tualization of resources based on SDN [98] and NFV [54]. These concepts allow mechanisms to
make a more efficient use of the hardware regardless of which is its placement in the network, i.e.,
regardless of source or destination-based. While NFV allows mitigation functions to be distributed
as a code that can be executed on generic servers acting on traffic, SDN allows a global awareness of
organizations about changes in network flows and detection of attacks.

3.4 Network-BasedDDoSMechanisms

Thegoal of network-basedMechanisms is to stop an attack in the network between source and target
and help the source and destination-based mechanisms to do their work correctly. Since source-
based mechanisms have difficulties finding attack patterns and destination-based mechanisms are
usually overloaded, network-basedmechanismshavebeenproposed to address this problemandhelp
both source and destination-based mechanisms carry out their duties more accurately. These mech-
anisms are deployed within networks, on routers, often extending the source-based mechanisms by
providing the marking of suspicious packets allowing the route of individual suspect packets.

Network-basedmechanisms attempt to balance inefficient aspects of source and destination based
mechanisms. While source-basedmechanisms have difficulties in detecting attacks since they lack an
overview of the attacking traffic, network mechanisms have a certain similarity in that they are also
not the final destination of the attack traffic. Thus, only a portion of the traffic passes through traffic
routers. Another obstacle is the costs of implementing detection and mitigation mechanisms, which
impose not only drawbacks in terms of performance but also financial costs to deploy and operate
DDoS detection and mitigation tools. Since operators implementing network-based approaches are
not the final destination of the traffic, carrying out inspections, analyzes andmitigations impose these
drawbacks thatmust be taken into account in a cooperative defense, i.e., § there is a need for incentives
for operators acting as traffic transit to enforce some measure to combat attacking traffic.

Since network-based mechanisms are not the target of the DDoS attack, costs involved can be-
come an impediment for their implementation. Thus, it is observed that many of the mechanisms
listed work in an interdependentmanner (cf., Table 3.3 - note that the full description of each work is
presented in Appendix A), i.e., they enable collaboration between domains using similar approaches.
Hence, transit domains may also be the target of an attack and require cooperation from another
mechanism that was once the target.
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Table 3.3: Comparison of Network-based DDoS Defense Mechanisms

Approach Architectural
Type

Activity
Type

Cooperation
Degree

Short
Description Year

PPM [177] Off-premises,
distributed Reactive Interdependent Probabilistic packet marking to flag packets

that potentially belong to a DDoS attack 2001

DPF [176] Off-premises,
distributed Reactive Interdependent

Distributed packet filtering that, based on PPM,
disclose a method to propagate filters across DPF
enabled devices

2001

Sterne et al. [233] Off-premises,
distributed Reactive Interdependent Based on the concept of active networks to

distribute intrusion detection rules 2002

PFS [222] Off-premises,
distributed Reactive Interdependent

Propabilistic filter scheduling approach aiming
to alleviate PPM’s intensive hardware usage by
sampling packets

2011

APFS [223] Off-premises,
distributed Reactive Interdependent

Optimize PFS toward an Adaptive approach,
which is calculated based on hop count, sender
availability and filter availability.

2013

CITRA [219] Off-premises,
decentralized Reactive Interdependent

Proposes a cooperative network of intrusion
detection and traceback systems between
CITRA-enabled agents

2001

SHDA [90] On-premises,
centralized Reactive Autonomous An SDN application to detect slow HTTP DDoS

attacks by analyzing flow counters 2018

MiddlePolice [132] Off-premises,
distributed Reactive Interdependent Edge routers keep a historic of IP addresses in

order to whitelist trusted sources 2016

Allmechanisms are based on the reactive type of approach, inwhich it is required to definemetrics
and analyze traffic to determine whether any mitigation measures are necessary. It is also noted that
most approaches operate on routers with probabilistic packet marking and filtering of marked pack-
ets. Among these, PPM [177] stands out as an approach to aiming to reduce performance overhead
on routers to define whether packets are marked as a suspect without taking into account mitiga-
tion measures. These were defined in later work with the Distributed Packet Filtering (DPF) [177],
in which domains with PPM-enabled routers could propagate specific filters for these packets in a
traceback approach.

These works also have a degree of interdependent cooperation them subject to independent oper-
ation and cooperation, when necessary. The exception is the CITRA [219] approach, which has an
exclusively cooperative approachbasedon an interconnectednetworkof intrusiondetection systems.
TheseCITRA-enableddevicesmaintain an isolated communication channel (overlay network) to ex-
change information about white or blacklisted IP addresses and maintenance of these lists. CITRA
has a similar operating approach to Sterne et al. [233], PFS [222] andAPFS [223], with the exception
that it is exclusively focused on IDS systems. PFS andAPFS, however, are not necessarily cooperative
and operate based on statistical information collected from routers.

Among the approaches listed, the ones more efficient in performance work with statistical analy-
sis extracted from routers. Since thesemetrics can be sampled without additional overhead, they can
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provide data for a detection approach based on this data, as presented in PFS and APFS. However,
mitigation-related activities canbemore complicated since thedetectionof attacks is similarly sophis-
ticated. Network-based mechanisms lack a full view of the attack as destination-based mechanisms
andmay result in loss of performance to enforce a blacklist, and legal aspects of specific addresses are
improperly blocked.

It is also essential to highlight the differences between network infrastructure types that network-
based mechanisms may operate. For instance, in core networks where Content Delivery Networks
(CDN) operate, packet-level detection and mitigation approaches can result in loss of performance
and, consequently, content quality (as reported in [159] concerning the impact of the traffic of grow-
ingCDNs and streaming services). However, for intermediaries that operate access (edge) and aggre-
gation networks, and consequently, deal with smaller volumes of traffic in contrast to core networks,
cooperation can be viable as long as there are incentives. In this sense, approachesmust be efficient in
detecting andmitigating attacks andhave incentivemechanisms formore organizations to participate
in cooperative mitigation of large-scale and highly distributed attacks.

3.5 HybridDDoSDefenseMechanisms

Thegeneral idea behind combining (source, network, and destination)mechanisms is to extend their
detection and mitigation capabilities across multiple networks. A significant difference concerning
mechanisms previously presented is the architectural type that refers to the differences between dis-
tributed anddecentralized architectures. A distributed architecture has central servers that effectively
distribute information to other nodes acting as slaves, but a decentralized architecture every node in
the network acts as master and slave. For instance, source-based approaches such as D-WARD [151]
or MULTOPS [76] often fail to identify the attack as a whole and only see parts of it. Destination-
based approaches can detect the entire attack volume. However, this quickly turns into their most
significant weakness since they have to mitigate massive traffic amounts at once.

Hybrid mechanisms can better cope with these highly distributed attacks by allowing the indi-
vidual defense systems to communicate among each other, attack information can be shared to be
able to react to attackers that might have remained undetected on a source system. In contrast, a
destination system might have identified the attack affecting one of the hosts within their domain.
However, hybrid mechanisms, in addition to extending detection and mitigation capabilities, com-
bine the negative aspects of other mechanisms, with the addition of a coordination network layer in
order to communicate actions between cooperative instances (cf., Figure 3.1).
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Figure 3.1: Communication Overlay on Hybrid DDoS Defense Mechanisms

WhileDDoSattacks typically have ahigher organizational capacity (since they inadvertently infect
connected devices), collaborative defenses present a series of challenges for them to become active.
Thosechallengeswere identified in surveys [183, 265],which arebroadly categorizedherein as (a) the
high complexity of operation and coordination; (b) the need for trusted and secure communication;
(c) lack of incentives for the service providers to cooperate; (d) understand how the operations of
these systems are affected by different legislation, regions, and countries. It presents a comparison
of how characteristics perform according to challenges in Table 3.4 (note that the full description of
each work is presented in Appendix A).

Secure Overlay Services (SOS) [103], Pushback [95] COSSACK [175], and DefCOM [169]
paved the way for cooperative defenses in the early 2000s. While SOS focused on identifying legiti-
mate sources for time-sensitive networks (i.e., requiringpeers to authenticate to theoverlay network),
Pushback, COSSACK, and DefCOM based their approach on detection and enforcement points in
access networks. However, these approaches required changes in routers or requiring the sources to
be registered, thus, presenting a high complexity of coordination and operation.

SDN-based solutions allow greater agility to enforce decisions that require a global network view.
Bohatei [69] demonstrates the scalability and performance advantages of using SDN in conjunction
with VNF to build aDDoS defense system on top of proven, existingmitigation components. Lever-
agingNFVwith SDNmakes Bohatei’s solution up to 5.4 timesmore cost-effective than fixed defense
facilities [69]. Utilizing existing mitigation solutions like Snort, Bro, and IPtables, make sure that
proven defense technologies are employed. However, although the combination of SDN and NFV
simplifies the technological aspect, the solutiondoesnot include cooperative other aspects of themit-
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Table 3.4: Analysis of Cooperative Defense Challenges

Work Cooperative Defense Challenges Year Activity
TypeTechnical Social Economical Legal

SOS [103]  7 7 G# 2002 Proactive
Pushback [95] G# 7 7 G# 2002 Reactive
COSSACK [175] G# 7 7 G# 2003 Reactive
Mayday [8] G# 7 7 G# 2003 Reactive
i3 [234]  7 7 7 2004 Proactive
Koutepas et al. [118]  7 7 G# 2004 Proactive
AITF [10] G# G# 7 G# 2005 Reactive
DefCOM [169] G# 7 7 G# 2006 Proactive
Zhang et al. [266] G# 7 7 7 2006 Proactive
Speak-up [248, 249] G# 7 7 G# 2006 Reactive
Chen et al. [39] G# 7 7 G# 2007 Reactive
DOW [261] G# 7 7 G# 2007 Reactive
StopIt [129]  7 7 G# 2008 Reactive
TMH [262]  G# 7  2009 Proactive
Velauthapillai et al. [247]  7 7 G# 2010 Proactive
NetFence [130] G# 7 7 G# 2010 Reactive
FireCol [72] G# 7 7 G# 2012 Proactive
Bohatei [69] G# 7 7 G# 2015 Reactive
Sahay et al. [208]  7 7 G# 2015 Reactive
Chin et al. [40]  7 7 G# 2015 Reactive
Giotis et al. [78]   7 G# 2016 Reactive
Steinberger et al. [232] G# 7 7 7 2016 Proactive
CIPA [38]  7 7 G# 2016 Reactive
CoFence [195]  7 7 G# 2016 Reactive
IETF DOTS [167] G# 7 7 G# 2017 Proactive
Hameed et al. [85] G# 7 7 G# 2018 Reactive
OverWatch [86]  7 7 G# 2018 Reactive
CoChain [1]  7 7 7 2019 Proactive
Spathoulas et al. [229]  7 7 7 2019 Proactive
Essaid et al. [66]  7 7 7 2019 Proactive
Pavlidis et al. [180]   7 G# 2020 Reactive

 = provides property;G# = partially provides property; 7 = does not provide property
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igation, such as how cooperativemitigation requests can impact operational expenses (economic) or
the potential damages to the public image of a domain in cases of information leaks (social).

It is also important to distinguish two types of hybrid mechanisms: (a) cooperative overlay net-
works to share information and (b) capability-based that extends (a) enabling peers to enforce ac-
tions on traffic.

• (a): Cooperative overlay networks are distributed frameworks enabling service and informa-
tion exchange among all defending nodes. All nodes should collaborate and coordinate such
that the mitigation is successful and effective. The nodes in this approach are specialized for
their particular purpose (e.g., detection or trace-back), depending on the virtual distance to
the source. Thus, it is important that they can communicate all the time, despite the attack’s
force.

• (b): Capability-based mechanisms let the victim explicitly authorize and allow the traffic it
wants to receive. The routers along a path check whether the traffic is legitimate. If not, i.e.,
, there is no permission that a system can send data to the victim; the data flow is stopped.
These mechanisms are always active, and their processing and memory overhead is high.

Technical Challenges

The technical challenges deal with the set of concepts and technologies distributed or decentralized
to make communication and effective mitigation actions possible. Thus, all works present differ-
ent alternatives to propose a collaborative defense, including mitigating actions or just the signaling
(capability-based) and detecting attacks (cooperative overlay meshes). Within the technical chal-
lenge, it is possible to make a broad distinction in these approaches between hardware (G#) and
software-based ( ). While hardware-based approaches require network equipment (e.g., router,
firewall, IDS, IPS) to be modified to operate with the overlay network and take action on-demand,
software-based approaches seek to minimize interference in the underlying infrastructure operat-
ing on standard off-the-shelf servers. Minimizing interference in the underlying infrastructure by
software-based options is essential due to the Internet’s high heterogeneity. However, while there
may be drawbacks in terms of performance, the solutionmay bemore compatible with amore signif-
icant number of participants.

Social Challenges

The social challenge concerns how overlays networks are composed, having as the main challenge
the establishment of trust between independent organizations. Several proposals listed in Table 3.4
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have the assumption that the overlay networkmembers are trusted. However, in a heterogeneous en-
vironment such as the Internet, this assumption limits the solution’s applicability to consortia with
a specified complexity, since different organizations and, often, competitors can use privileged in-
formation to obtain competitive advantage [81]. Notwithstanding, it is still essential that there is a
certain level of trust between the members of this cooperative overlay and approaches that can pre-
ventmalicious use and free-riders. Thus, approaches taking this need into account aremarked as ( )
in the Social column, otherwise marked as (7).

Economical Challenges

Solely relying on voluntary contributions within the collaborative environment creates a favorable
environment for free-riding (consuming resources without contributing). Hence, incentives among
the participating members need to be provided. The problem of fixing an incentive chain to counter
DDoS attackswas discussed in 2007 [91], inwhich the authors sought costmodels and possible tech-
nological solutions to enable an incentive chain. Costs are typically defined in the form of CAPital
EXpenditures (CAPEX) to configure and maintain the communication infrastructure and OPErat-
ing EXpenditures (OPEX) to cover resource utilization costs for the actual attackmitigation. Among
the alternatives, the authors concluded that usage-based pricing based on the capacity provision en-
abling victims to disseminate enough incentive along attack paths. None of the works (7) listed in
Table 3.4 proposed a technical solution to encourage the participation of other organizations in the
dissemination of information about attacks and their mitigation.

Legal Challenges

It is essential to point out that these challenges are interdependent, i.e., to provide incentives or map
contributions, and possible abuses in the collaborative environment, it is necessary to have support
in the technical environment. Concerning legal aspects, this interdependence also exists being nec-
essary to consider and react upon the differences in the legal aspects of each region or country, which
can influence the cooperation among members. For example, for legal reasons, a member may be
prevented from blocking traffic of a suspected host. Based on the premise of most of the works that
the participating members of the alliance are trusted, such inter-dependence is highlighted on the
condition that most of the works partially (G#) address legal aspects. Themajor challenge in the legal
dimensions is not precisely from a technical nature, although relying on it. Inmany cases, legal issues
rely on government legislation and regulations of the organization itself. Such challenges can become
the biggest impediment to sharing information, with the general concern about leaking information
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that can harm both users (mostly IP addresses) and the company itself (information about service
availability).

3.6 Analysis of Cooperative Defenses Characteristics andChallenges

This Section it is structured in three subsections in order to (subsection 3.6.1) analyze the devel-
opment of cooperative defenses over time, their characteristics (subsection 3.6.2), and how those
cooperative defenses cope with the aforementioned challenges (subsection 3.6.3).

3.6.1 Timeline of Cooperative Defenses

Figure 3.2 shows the distribution of works described in this chapter by year. This distribution is
essential to analyze the evolution of the proposals in this area and evaluate which sets of factors can
motivate or discourage newproposals. It is also noteworthy that not all existingworkswere described
but the most relevant ones considering their citations’ number.

Asdepicted inFigure3.2, the yearsof 2000 to2005denote the initial periodof researchbyacademia
and industry in the area of cooperative defenses to combat DDoS attacks. In these years, proposals
for mechanisms focused on countering or detecting attacks, not necessarily using a hybrid-mode. In-
stead, a predominance of source, network, and destination mechanisms is observed as tools that can
operate independently (i.e., according to their cooperation degree).

From 2006 to 2020, hybrid mechanisms based on overlays networks predominate to exchange
information between different organizations. Many of these hybrid mechanisms are based on ap-
proaches proposed in the early periods, such as IP traceback [258, 263], to mitigate attacks close to
their origin networks. During this period, technologies based on the virtualization of resources, such
as Cloud Computing (2006), emerged. Cloud computing was a milestone for service providers to
maximize the efficiency of using their hardware infrastructure, typically allocated to specific applica-
tions in grids/clusters. In this sense, there are protection service providers like CloudFlare [43] and
Akamai [3] that use their infrastructure as a proxy to alleviate the victim in the case of DDoS attacks,
by using their large pool of resources.

Othernetworking concepts suchasSoftwareDefinedNetworks (SDN)andVirtualNetworkFunc-
tion (VNF) emerged, driven by softwarization generated by cloud computing. This denotes the
boom in related works seen in Figure 3.2 during 2015 and 2020, in which most are based on SDN
such as Bohatei [69] Sahay et al. [208], and CoFence [195] - based on VNF. SDN is an excellent
platform for building collaborative defense mechanisms as it provides a global view of the network,
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Figure 3.2: Distribution of Cooperative DDoS Defense Works per Year and Classification of
Mechanism (i.e., Source, Network, Destination, and Hybrid)

facilitating its management. Also, by relying purely on software, the implementation of detection
algorithms for various types of attacks ease the propagation of information about attack patterns.

The period from 2017 to 2020 denotes the combination of SDN-based and Blockchain-based ap-
proaches, such as [200] and others based on it [77, 180]. While SDN provides greater efficiency in
detecting and mitigating attacks, Blockchain is an excellent platform for signaling these attacks and
providing incentives. In addition, inmid-2016 an IETF approach emerged, DOTS [156, 167], whose
architecture and standardization process is still in progress. While the IETF aims to solve technical
compatibility by standardizing the DOTS protocol between manufacturers and major Internet play-
ers, there are challenges of economic dimensions that are not addressed in the protocol’s proposal.

3.6.2 Analysis of Cooperative Defense Characteristics

As the number of DDoS attacks increases, there is also an increase in the number of proposals to
counter these attacks based on different approaches. The literature presents different ways to cat-
egorize DDoS defenses [151, 183, 265], which were the basis to categorize the works presented in
this Chapter. Figure 3.3 shows the percentage of distribution of the different characteristics in the
analyzed works. In particular, Figure 3.3 (a) details the percentage of distribution of the types of
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Figure 3.3: Percentage of (a) Work per Classification and (b) Activity Type

mechanisms. Hybridmechanisms represent 54.4%of the total, while theminority is dividedbetween
destination (17.5%), network (14%), and source (14%) mechanisms. However, it is observed that
most hybrid tools are basedon tools and approaches from thedestination, network, and source-based
mechanisms. For instance, IP traceback to push mitigation actions toward the attack source and sta-
tistical packetmarking for signaling suspect flows. Therefore, source, network, and destination-based
mechanisms often serve as platforms, in which hybrid mechanisms are implemented across different
organizations and infrastructures.

Theactivity type (cf., Figure 3.3 - b), concerns the regards themodeof operationof themechanism.
While proactive (33.3%)mechanisms are typically targeted toward the detection of DDoS attacks at
multiple points across a collaborative alliance, reactive (66.7%) mechanisms (i.e., capability-based),
react to the attack enforcing actions such as black-holing traffic or blocking blacklisted IP addresses.
Since reactive mechanisms typically rely on proactive detection mechanisms (i.e., there is a combi-
nation of proactive and reactive mostly observed in hybrid mechanisms), the proportion 3/4 shown
in Figure 3.3 (b) is aligned with reality. However, there may be independent attack detection points
deployed across a collaborative defense continually looking for potential attackers based on in-line
tools, such as firewalls and IDS/IPS systems (e.g., Snort [33] and Bro [181]). Also, collaborative de-
tectionmechanisms are not always proactive in contrast to capability-basedmechanisms that enforce
action on detected attacks are always reactive as they depend on confirmation of the attack. For in-
stance, a detection mechanism may leverage flow data exported from the edge routers and switches,
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Figure 3.4: Percentage of (c) Cooperative Degree and (d) Architectural Type

andperformmeta-data analysis to detect anomalies. Then, possible anomalies can be contrastedwith
a similar analysis at a segment where the traffic flow traverses to confirm an eventual DDoS attack.

Figure 3.4 (c) and (d) shows, respectively, the cooperative degree and architectural type. These
figures reinforce the correlation between the type of architecture and the degree of cooperation,
which is related to the classification of the mechanism. For instance, off-premises decentralized ar-
chitectures (56.1%) are directly related to the cooperative mode (57.9%). However, interdependent
(31.6%) and autonomous (10.5%) cooperation degrees do not directly correlate with the architec-
tural type, often being organized in distributed off-premises mechanisms operating independently.

3.6.3 Cooperative Defense Challenges for Hybrid DDoS Mechanisms

Figure 3.5 extends Table 3.4 presenting details on the percentage in which the hybrid mechanisms
fulfill the challenges. This emphasizes the need for hybrid mechanisms able to provide technical re-
sponses in these dimensions. Technical challenge is themain one faced by thesemechanisms consid-
ering since it reflects on the system design which is the platform where social, economical, and legal
challenges are implemented.

The technical dimension depicted in Figure 3.5 encompasses this vision with all mechanisms pro-
viding solutionswithdifferent approaches andcharacteristics. ThedistinctionbetweenCheck(51.6%)
and Partial (48.4%) implies how to implement these mechanisms, imposing a greater or lesser need
for hardware changes on the peers involved in the collaborative defense. An ideal solution should
avoid extra hardware or software requirements on the underlying network infrastructure, which can
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Figure 3.5: Percentage of Addressed Challenges by Hybrid DDoS Mechanisms

be achieved either by using a novel technology (e.g., , SDN, and NFV) or a novel architecture, such
as IETF DOTS [156] and DefCOM [169].

However, challenges in dimensions such as economic and social, are not adequately addressed. In
case of economic challenges (i.e., whether there is an approach to provide incentives that can cover
detection costs or collaborative mitigation), 100% of the mechanisms do not address the challenge.
In this sense, there are mentions [91, 265] of the need to build a chain of incentives to foster the
adoption and use of collaborative defenses, but there is no mechanism in itself. Also, there is the
challenge of possible peers who can use services without contributing, even abusing these services if
there is no compensation for this use (i.e., free-riding [81]).

Another challenge of fundamental importance is the social one, in which most approaches con-
sider as a premise that all participants are trusted. Thus, security details such as confidentiality and
integrity of information exchanged in theoverlay arenot addressedbymostworks (87.1%). Although
the premise that members participating in the cooperative alliance are true, it is necessary to ensure
that the origin of the information can be verified at each interaction, avoidingmalicious acts thatmay
generate competitive advantages in the market (in competing organizations). Henceforth, the addi-
tion of reputationmechanisms is a reliable answer widely used in collaborative P2P systems, which is
tackled 6.5% of the mechanisms (e.g., Giotis et al. [77, 78] and partially in 6.5% (e.g., AITF [10] and
TMH [262]).
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Concerning the legal aspect, mostmechanisms deal partially (77.4%) based on the premise of par-
ticipation by trustedmembers. However, even among trustedmembers, it is necessary to understand
and react upon the differences in each region or country’s legal aspects, which can influence the coop-
eration among members. For example, for legal reasons, a member may be prevented from blocking
a suspected host’s traffic. Thus, a technical solution based on BC should avoid additional costs re-
garding hardware and software and be simple to deploy and operate. However, BloSS encompasses
the support for incentives based on BC that can be safely and reliably distributed among participants
and that legal/conformity options can be selected to, for example, restrict operation to specific re-
gions/countries or members.

Therefore, cooperative defenses can benefits from BC in different dimensions. While BC can (i)
reduce the complexity of operation and coordination by using existing infrastructure to distribute
rules without specialized registries or protocols, it also can foster a (ii) trusted cooperation due to its
transparency and decentralized characteristics. Also, it can provide (iii) financial incentives which
foster the cooperative behavior among service providers [198]. Thus, BC capabilities can be lever-
aged for signalingmitigation requests across aBCnetwork in a similar approach thanDefCOM[169]
and serve as a stable platform for the exchange ofmitigation services, where participants express their
needs in forms of incentives.

3.7 KeyObservations

This Chapter provided an analysis of the state-of-the-art concerning cooperative defenses. The anal-
ysis was performed during the thesis’s development, which is fundamental to identify critical points
that prevent widespread adoption of collaborative defenses, such as listed in the challenges men-
tioned above. In specific, the objective was to analyze how the different mechanisms provide an
answer to counter DDoS attacks and analyze how these mechanisms tackle challenges in different
dimensions. While all mechanisms provide technical solutions for signaling or collaboratively mit-
igating attacks, an interesting question is how these mechanisms are implemented i.e., referring to
the first dimension of analysis concerning technical challenges. In this sense, approaches that pro-
vide less overhead in the underlying infrastructure are more desirable, considering that the Internet
is composed of diverse subsystems and heterogeneous peers.

The underlying infrastructure of the Internet is highly heterogeneous. Thus, cooperative defense
solutions imposing hardware requirements also impose a limitation on its deployment and opera-
tion. As discussed in subsection 3.6.3, there are different approaches to leverage the adoption of a
given solution across the Internet. While the first involves standardizing a communication protocol
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and corresponding architecture, the second involves proposing solutions based on software capable
of running on standard servers. The most prominent example of a standardization attempt case is
the IETF DOTS protocol [156], which seeks to define a protocol and architecture involving major
telecommunications players and content providers, for a cooperative solution operating based on a
distributed client-server model. Therefore, the proposed solution does indeed introduce hardware
requirements to support the proposedprotocol, but since the change is a consensus among influential
organizations, it may indicate a cooperative solution’s widespread adoption. Solutions of the second
category are based on recent software-based technologies, whether in the part of network manage-
ment with Software-Defined Network (SDN) or in the Virtualization of Network Functions (VNF)
that allow greater flexibility in the network or execution of rules requested by a third party without
imposing restrictions on hardware. In this sense, the state-of-the-art assessment covered in Section
3.5 was relevant to confirm technical challenges for widespread deployment pointed as indicated in
previous surveys [183, 265].

The heterogeneity issue is related to a challenge in the social dimension reflected in the decentral-
ized nature of different organizations, their trust premises, and the competition among organizations
in the same commercial segment (e.g., content providers). These and other factors indicated in this
Chapter (cf., subsection 3.6.3)make the use of Trusted-Third Parties (TTP) difficult in the context of
collaborative defenses. Also, even if there is a platform of relatively easy implantation and operation
and potential trusted relations among its participants, without an incentive scheme, the collective
defense would become difficult. In this sense, there is an implication in operational costs to mitigate
large-scale attacks involving specialized equipment and personnel.

Therefore, cooperative defenses can benefit from BC in different dimensions since there are no
major hardware requirements in a permissioned setting. There is a possibility of increasing trust lev-
els through the transparency of actions and adding incentives in exchange for mitigation services.
However, as indicated in previous surveys [183, 265] and described in detail in this Chapter, there
is a need for technical solutions to address all the challenges presented in different dimensions. Eco-
nomic, social, and legal challenges directly impact trust in the cooperative system, which combined,
exert fundamental relevance in the influence of decision-making processes (e.g., whether to adopt a
given system or cooperate), and establishment andmanagement (e.g., reputation systems) of trust in
the cooperative defense context.
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4
Design of the Cooperative Signaling Protocol

ThisChapter discusses the design details of the cooperative protocol, which governs a technical solu-
tion to the challenges listed in the technological, social, economic, and legal environment. Hence, the
protocol is deployed in a BC-based environment whereas allied members can request and offer miti-
gation services between pairs of Targets (T) and Mitigators (M). Considering the need to minimize
the impact on the underlying networking infrastructure and maximize the applicability of the coop-
erative solution, an entire software-based approach is used for both the deployment of the on-chain
protocol and the Decentralized Application (dApp) operating on the peers.

The Blockchain Signaling System (BloSS) is structured in two parts:

• On-chain: include the processes of integrated payment and reputation ranking, being based
on a sequence of defined steps mapped as states whereas each step’s outcome is transparent
and verifiable. Confidential information pertaining to collaboration between pairs is sent off-
chain.

• Off-chain: includes the dApp with interface to the network management system and the de-
ployed on-chain protocol. BloSS dApp stores individual settings related to when and how to
request or accept mitigation services including legal aspects, fully detailed in Chapter 5.
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4.1 DesignConsiderations

Based on the discussion of the challenges listed in the state-of-the-art (cf., Chapter 3), structured in
the technical, economic, social, and legal dimensions, this chapter presents the rational behind the
design. In this way, the design seeks to reflect on a system bringing together the following character-
istics in order to amplify the deployment and operation of collaborative defenses:

• Technical: provide software-based approach enabling the exchangeof information in the tem-
poral scale of seconds to minutes.

• Economical: enable the exchange of incentives for mitigation services, in order to cover op-
erational expenses.

• Social: interactions should be private and transparent to members within an alliance.

• Legal: members should selectwhichmembers to interact basedon internal organizational and
legal issues.

Henceforth, considering the need to minimize the impact on the underlying networking infras-
tructure and maximize the applicability of the cooperative solution, an entire software-based ap-
proach is used. Protocol’ contracts are defined on-chain between pairs of Targets (T) andMitigators
(M) with a defined and verifiable sequence of steps within a permissioned network. Details the on-
chain cooperative signaling protocol including processes of integrated payment and reputation rank-
ing, and concerns the Blockchain Signaling System (BloSS) dApp based on SDN to facilitatewith the
network management system signaling attacks and the implementation of mitigation actions. BloSS
allows for the distributionof incentives to boost the cooperative behavior of participating entities and
to track the reputation of operators involved. Thus, SCs are deployed in the underlying permissioned
Ethereum [253] BC infrastructure (deploying a Proof-of-Authority (PoA) consensus mechanism)
used to signal attacks over several domains, while at the same timemanaging incentives. E.g., a Com-
puter Security Incident Response Team (CSIRT)within the same region is able to establish a private
network, which is transparent only for its cooperative members (i.e., the CSIRT consortium). The
consortium-basedBCdeployedprovides trust bydefinition, i.e., assuming that shared informationon
an attacks signalled will not be exposed externally. However, trust is the key, as it involves sharing of
data between CSIRTs [14]. Thus, a BC-based solution can provide through its natural transparency
a higher degree of transparency and trust between collaborative instances.
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Table 4.1: Benefits and Drawbacks of a BC-based Collaborative Platform in a Cyber-security
Context

Dimension Benefits Drawbacks

Performance Relatively simple to deploy
and operate

Lack of performance in terms
of transactions per second
and storage capacity

Incentives Platform to distribute incentives Incentives may not be required
by the CSIRT community

Security Enhancement of trust through
full transparency & decentralization

Excess of transparency may impair
confidentiality

4.1.1 Performance — Block Size and Delay

A limiting factor in a BC-based cooperative defense concerns the deployment and operation of a plat-
form, referring to a technical usability aspect. Being widely tested platforms, resilient to DDoS and
providing immutability and transparency are advantages of the BC that impact user confidence in a
positive way. However, it is worth noting the drawbacks regarding latency performance (e.g., time
for block propagation), which even in a permissible deployment based on a consensus mechanism
such as PoA, present a performance degradation due to total replication of the data. As certain nodes
require a higher level of trust in a PoA network [55] and trust is already given in a consortium-based
BC; a trustless PoW-based consensus would only lead to excessive computational effort. Therefore,
depending on the governancemodel established for the alliance, two ormore nodes (even all nodes)
can be defined as authorities or super nodes, entitled to collect transactions, build blocks, and prop-
agate them across the network.

In addition, a limiting factor in performance (throughput) is the relation between the block size
and the propagation delay, i.e., latency. The BC throughput is defined as [52]:

TP =
blockSize
propDelay

(4.1)

Considering a blockSize of 1MB and a propDelay of 10s, the throughputwould be of t 0.1MB/s deliv-
ered in epochs defined by the block generation time. Similarly, a blockSize of 2MB and a propDelay of
10 s would result in a twice better throughput t 0.2MB/s. In addition, it should be noted that increas-
ing block size can also negatively influence propagation time, the larger the file size being transferred,
the greater the transfer time (cf. Figure 4.1).
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Figure 4.1: Influence of Block Size on Propagation Delay [56]

The effects of an increasing block size on the propagation delay is shown in Figure 4.1. It has been
shown a strong correlation between the size and its influence on the propagation time through the
delay cost, which is defined by the authors as the time delay each kilobyte causes to the propagation
of a transaction or block [56]. As reported, for sizes below 20 kB the round trip delay caused by the
Protocol (Bitcoin used as example) causes a major influence on delay, whereas in blocks larger than
20 kB, each kilo byte represents an additional of 80ms. The number of available blocks in a period of
time can be determined by relation between the block generation time blockGenTime and the period
of time T. Thus, considering a blockGenTime of 15 s based on the Ethereum, and a period of time in
a day (in seconds)T = 86,400 s, the number of available blocks in a day is given byT/blockGenTime,
resulting in this case in 5,760 blocks. Themaximumamount of information that can be StorageAvail-
able in the Period (SAP) is described by:

SAP =
T

blockGenTime
× blockSize (4.2)

In the case of a blockSizeof 1MB, the SAPconsidering a blockGenTimeof 15 secondswouldbe 5,76
GB of storage available in a day, and 11.52 GB for a 2 MB blockSize for the same blockGenTime. An-
other negative aspect observed in a BC solution is the need for storage of BChistory. This is to ensure
that data previously entered into the BC is verified by all members, and also to preventmodifications
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being made for any malicious purpose. Alternatively, it is possible to define times (e.g., , monthly or
yearly), in which organizations of the alliance can save the BC state into a snapshot (which needs
to be hashed and compared by all members) and start a new fork of the same BC [268]. However,
such an approach does not reduce by itself the need for storage, requiring snapshot compression and
storage at a more efficient media.

4.1.2 Financial Incentives

The CSIRT community currently shares information based on trusted contacts [226], i.e., the ex-
change of information betweenCSIRTsworks at the confidence level that is defined by eachCSIRT’s
individual relationship with other members in a region, group, or alliance. Currently, no exchange of
financial incentives exists for shared information or cooperative mitigation actions.

The use of BC as a collaborative platform allows the creation of a marketplace to exchangemitiga-
tion services, financially rewarding actors involved in the mitigation of requests. While, to the best
of the authors knowledge, there is no financial reward for these services (nor their needs explicitly
evidenced by CSIRTs), there are proposals to formalize an incentive model associated with sharing,
analyzing and delivering cybersecurity services [189]. There are arguments both for and against the
use of financial incentives [102, 226]:

• Against: changing the current model of how information is shared could impact the trust
model among CSIRTs.

• In Favor: incentives could allow for greater engagement of collaborative organizations, work-
ing similarly to a bug bounty program.

The lack of financial incentives could discourage cooperation, which involves the use of resources
and possible legal consequences of future mitigation acts in cases of false positives. The argument
in favor is “a lot to lose and little to gain” [226] in effecting collaborative mitigation, and incentives
are required to increase engagement. Naturally, by requiring resources from third parties, financial
incentives are the most effective way to cover these costs.

Considering that BC is a transparent platform, in which cooperative entities can define its terms of
cooperation (i.e., , incentives and conditions to perform a mitigation service) in its smart contracts,
the negotiation of a mitigation service takes place in a transparent manner. Also, with the history
of past negotiations open to all members within the alliance, organizations are able to evaluate each
participant’s mitigation or requester history as well as their terms for performing the service.
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4.1.3 Blockchain as an Enabler of Trust

Trust is the fundamental aspect of any cooperative environment and difficult to obtain, since it may
rely on many non-technical aspects [88]. Also, the process of building trust between entities has no
relation to a specific technology and several non-technical and specific aspects of each organization
are required. BCs operate as a “trust-enabler”, providing transparency and trust between cooperative
organizations. However, it is not possible to quantify the role of BCs as a trust enabler, since it is not
possible to determine a “probability” in which the use of BC is a determining factor in ensuring trust
between organizations. The role of BCs in building trust has been studied by [87], in which solutions
are addressed on how these conflicting notions may be solved, while exploring the potential of BCs
for dissolving the trust problem. According to [191, 246], themain characteristics of trust are defined
as:

• Dynamic: as it applies only in a given time period and maybe change as time goes by. For
example, a history of security data sharing between twoormore companies does not guarantee
that these companies will always share data at any time. Trust can only be built during a time-
frame.

• Context-dependent: the degree of trust on different contexts is significantly different. E.g.,
organization A may share threat indicators, but may not disclose actual malware intelligence
due to, e.g., legal issues. Thus, trust may exist between organizations A and B only for sharing
a “threat indicators” context.

• Non-transitive: if A trusts B and B trusts C, A may not trust C. However, A may trust any
organization that B trusts in a given context.

• Asymmetric: trust is a non-mutual reciprocal in nature. That means if entity A trusts B, the
statement entity B trusts entity A is not always true.

Among the various (non-technical) facets of trust, in the cooperative platform it plays a crucial
role. This has been demonstrated in different e-commerce studies [110, 135], where online shoppers
must necessarily rely on the functioning mechanism of the online store to make the purchase (i.e.,
use the credit card in a potentially unknown online store). These studies suggest to measure trust as
the belief that a platform is honest, reliable, and competent.

Mapping these dimensions to BCs, a permissioned deployment model with a consensus neces-
sarily open to the participation of all members within the cooperative defense meets these require-
ments. The capability to create an immutable and publicly (within this context) available record of
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transactions is seen as an enabler of trust [87]. In addition, the definition of rules between partici-
pants through SCs does allow to verify the execution of the SC defining the cooperation. However,
algorithmic trust is not limited to the correct functioning of the algorithm, but also includes a variety
of socio-technical factors, such as its formal and legal correctness beyond the technical solution.

However, considering security (confidentiality) requirements as a collaborative defense, a deploy-
ment private permissionless needs to be considered, i.e., closed to a community. In this sense, infor-
mation disclosed in this cooperation network should not be disclosed to the general public, but kept
within the cooperative network. It is important, within this alliance, that all members participate in
theBCconsensus on an equal basis, preventing certainmembers from e.g., having the ability to censor
certain transactions.

Finally, BCallows tobuild a reliable and robustplatform for signalingDDoS threats in a transparent
and verifiable manner, but it does not cover all the security needs of such platform. For example,
while transparency favors a trust-free platform, it is needed to strike a balance with confidentiality
requirements of each member in order to securely exchange information.

4.2 Cooperative Signaling Protocol

Figure 4.2 depicts possible states and transitions depending on themessage sender (i.e., caller) of the
function, including the rating of both, the mitigation service performed by an M entity accepting a
mitigation request and a T entity, the T of the attack. After the deployment of the SC, the default
state Request is set until the T requests defense from a M by initializing, which changes the state to
Approve. The initialization contains important variables (e.g., network information, deadline inter-
val, or minimal amount of funds), which are not changed during the following process until the SC
is reused through initializing or re-initializing. During Approve, the chosenMmay cooperatively ac-
cept or is uncooperative deny the request which either leads to the state Funding or the end-state
Abort. The negotiation of SC parameters can take place off-chain through a direct communication
channel if needed. For example, the Whisper protocol (Ethereum) could be used to agree on these
SC parameters. This negotiation phase could as well be designed two-ways, allowing T to submit an
actively “request for service” toM. Once the offer reachesT, the domain under attack can draft a valid
mitigation SC.

While in the Abort state, the Tmay choose to initialize with a differentM or re-initialize with the
sameM to reach Approve again. However, if theM is cooperative, the Funding state begins, and after
sending the required incentives, the state switches to uploadProof and the funds are locked into the
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Figure 4.2: On-chain Cooperative Signaling Protocol

SCuntil completion. Twrites the attack information (e.g., IP address ranges, packet captures, request
headers, notes, and other patterns [197]) to the external off-chain storage (e.g., IPFS [17]). During
the service time window (t0),M is supposed to upload a proof of service. Mwill have an incentive to
submit a proof (even a forged one) since time works againstM. T is obliged to validate the effective-
ness of the service and rateM during the validation time window. Twill have the interest to vote and
proceed in the mitigation process since the clock works against T during this time window.

TheM can upload proof in the formof a report that is used as evidence for work that has been done
by theM tomitigate theDDoS attack. In the best-case scenario, both parties keep their promises and
deliver money and service on time. The offers and SC proposals can be made repeatedly by the two
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domains until they find an agreement. During this process,M and T also agree on the deadlines for
service delivery, validation, payment, and rating. Playing against the rules will result in a financial loss
for both parties, as depicted in Figure 4.3. For example, ifTmisses to acknowledge or reject the proof
in response to the delivered service,Mwill be rewarded.

Abort task
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Task
started?

Task

Current block
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Service deadline

No

No

Current block
<=

Validation deadline

Exists block(proof )
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Reward attack
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<=

Validation deadline

No

Yes

Reward
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No Task contract
ownership?

Mitigator

Abort

Ignore

Figure 4.3: Payout Process: T is Refunded, if no Proof was Uploaded and M is Rewarded, if T
Does Not Validate in Time

Therefore,T is penalized and has no chance to retrieve the payment. Both parties are free to abort
the protocol, if the counter-party did not deliver the result expected during the agreed time-frame.
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Thedecision flow that shows who gets rewarded on abort is visible in Figure 4.3. IfM did not deliver
the service, T will retrieve the payment. Similarly, if T did not respond during the validation time
window,M will be reimbursed. M is not allowed to rate, if no proof was uploaded. This ensures that
a user’s reputation is only changed through valid interactions, which impedes bad-mouthing [30]. In
order to bad-mouth a competing domain and deteriorate its reputation, the attacker needs to buy at
least as many mitigation services from this competitor. This increases the competitors’ profit and is
irrational [30]. In contrast toM, the process allows T to rate, even if no proof was uploaded during
the service window.

However, even if the BC preserves a transparent audit trail for all transactions, it cannot compen-
sate for lack of ground-truth. This holds for the uploaded proof of service as well as for user-defined,
subjective ratings, inwhich there is no automatedway to fully determine the truthfulness of a proof or
rating. If the defined the deadline interval is missed, or there is no upload of a proof, theM is marked
as lazy, and the updated state is Abort. If a proof is uploaded, the rating process of the T and the M
begins. During rating, only the case where both actors are dissatisfied leads to the Escalate end-state
in which the actors themselves must manually find a solution to find consensus upon the service and
incentive. All other combinations of theT orM rating satisfied, selfish or dissatisfied, lead to the end-
state Complete. When Complete is reached, the locked funds from BloSS are released and transferred
to either the T or theM, depending on missed deadlines and ratings.

Storing participating Targets (T), Mitigators (M), and their respective addresses in a Register SC
(i.e., a meeting point for participants of the collaborative defense), enables a search for Ms and an
efficient management of active processes. This registry type SC extension is important to facilitate
the process of finding a known M, which is already registered, waiting for a T to interact. When M
is not be found in the Register, the default address value is received by T and further searching for a
specificM can be done. However, in case the requiredM is found,T addresses can be observed byM
in order to interact with the SC itself. At this point, an SC has stored the address ofT andM in order
to either allow or disallow access to functionality or a change of SC states.

Retrieving an M (i.e., retrieving an M from the Register SC) requires to know its identifier by the
TargetT. If the identifier and theM address exist without having an SC address assigned to the same
struct, the address of this SC is assigned and registered and that M address is returned to the SC in-
stance. Aprotocol is createdby associating addresses ofTwithM in a verifiableon-chainSC.Enabling
both Register and BloSS SCs to interact, offers advantages, such as calling methods or retrieving in-
formation from each other. The logic in the SC can be separated from the registration process. Thus,
a single deployment of aRegister is needed whereasmany SCs can be created, allowing everyT to de-
ploy BloSS and search for anM in theRegister. By storing pairs of addresses in an efficiently verifiable
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data structure, a mapping allows for a usable client-side implementation, where only one instantia-
tion of BloSS is needed for the interaction between theT and theM and one key with which a search
on the map can be done.

4.2.1 Protocol Outcome Scenarios

At scenarios 1 and 2 T is dissatisfied as a result of M not uploading a proof, leading to funds being
refunded toT. Even without a reply fromT,T is refunded (cf., scenario 2). To remove the possibility
of ballot stuffing, whereTwould rate satisfied in case noproof being uploaded,T is not allowed to rate
positively here. However, if a proof is uploaded before the service deadline ends, T can rate satisfied,
be selfish, or dissatisfied. M can always react and rate rational, be selfish, or irrational, which enables
further possibilities, although only three ending states can be reached after locking the funds.

Scenario 3 shows T rating satisfied andM reacts rationally with a positive rating, leading to funds
being transferred toM. Similarly, scenarios 4 to 8 ofT rating satisfied or being selfish (i.e., missing the
service deadline) lead toM being rewarded, regardless of the rating byM. Case T is dissatisfied with
the proof uploaded byM andM reacts in a rational way by rating dissatisfied as well (cf., scenario 9).
The case escalates and further investigations are needed for resolving it. Scenarios 10 and 11 lead to
T being refunded due to rating dissatisfied andM being selfish or rating irrationally satisfied.

4.2.2 Truthfulness of Mitigation Proofs

Acrucial elementwithin the cooperativeprotocol is the abilityof anM toprovide aproof-of-mitigation
that satisfies the aspects of reproducibility, tamper-evidence and timeliness. If such a proof is not
available right after completion of the mitigation, the other party will withhold the incentive payout
and the overall service becomes unusable. Manual verification of a mitigation proof is not feasible,
due to the strict timeconstraints required toprovide amitigation service able to counteract large-scale
DDoS attacks. The timeliness aspect does, therefore, include the aspect of being able to automatically
verify the proof during the available time-window and excludes any user interaction in order to be ef-
ficient.

After the acceptance of the service mitigation terms by both parties (T andM) and T send funds
to be locked in the SC, a period to complete the service begins, in whichMmust send proof of ser-
vice mitigation. At this stage, a technical challenge is the absence of guarantees that the service was
performed as requested since it is performed outside the premises of T. This problem was detailed
in a previous work [141] and this subsection presents an overview on the challenge of verifying the
quality of the mitigation service.
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Figure 4.4: Approaches Toward a Verifiable Mitigation Proof [141]: (a) VNF Marketplace, (b)
Trusted Platform, (c) Secure Logging, and (d) Network Slicing

VNF Marketplace

Allows for a T to encapsulate mitigation actions as a software that can be directly deployed on com-
modity hardware running onM’s site. In such an approach, amarketplace forVNFs can be built for all
entities involved in the cooperative defense. Then, aM loads the VNF certified byT directly from the
marketplace to perform the mitigation service using a cookbook with negotiated on chain e.g., list of
attacking addresses and a mitigation action. While this approach provides a high degree of isolation,
it does not guarantee that M would not tamper with its execution environment. Solely deploying a
VNF is not a reliable proof of mitigation and T still needs to trust thatMwill run untampered VNFs
directly from the VNF marketplace.
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Trusted Platform Module

A TPM allows to extend the chain of trust up to the VNF itself. Incombination with a VNF mar-
ketplace, it is possible to provide a mitigation service in which VNF requests are always handled by
known and trusted hardware. However, this approach imposes scalability concerns once TPMmod-
ules are a feature available only as a standalone chip or as a solution integrated into themotherboard,
but it does not come pre-installed on networking equipment. Still, it would not be possible to ensure
the truthfulness of themitigation once amaliciousMwould be able to change the network flow to the
system running themitigation VNF and lead it to believe that it is seeing all the trafficwhile in reality,
parts or all of the attack traffic have been rerouted and no mitigation seems to be required anymore.

Secure Logging

Secure Logging is the production of a log outputting the effect of a mitigation action, which can be
leveraged by previous approaches, where a VNF certified by T and running on a TPM module does
store logs inside a BC to ensure immutable evidences. However, similarly to previous approaches, it
is still not possible to guarantee the truthfulness of amitigation test, since underlying traffic flows can
be tampered before reaching VNFs required by T.

Network Slicing

An approach leveraged by SDN networks in which it is possible to virtualize network segments and
allow T to install specific flows to perform the mitigation. Therefore, instead of allowing a virtual
network function (whose source code may not be known byM), controlled access to the infrastruc-
ture (specified in the slice) is allowed to T. However, it is still possible that the slice provided by a
maliciousM is tamperedwith so that actions defined byThave no real effect on the underlying traffic.

Truthfulness of Mitigation Proofs

For a qualitative discussion of the individual approaches, metrics are based on the scheme proposed
byZargar et al. [265] and focus on thedeployment complexity aswell as scalabilitywhile adding secu-
rity relatedmetrics not present in [265]. These additionalmetrics can provide an important overview
of the presented approaches since providing a successful proof of mitigation is largely dependent on
the security of the system generating the proof as well as the proof itself.

1. Confidentiality: Describes how effective rules and measures are to protect both the mitiga-
tion proof as well as the mitigation system from unauthorized access.
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2. Integrity: Defines the level of trustworthiness of the proof generated by the given approach
in regards to accuracy and tamper-resistance.

3. Availability: Relates to the availability of the mitigation proof to authorized parties.

4. Reproducibility: Describes the ability to reproduce the proof through replay by a third party.

5. Tamper-Evidence: Discloses the effort necessary for changing the proof of mitigation to re-
flect an alternate reality.

6. Timeliness: Defines the ability toprovide anautomatically verifiableproofwithin apre-specified
time-frame while adhering to all security requirements.

7. DeploymentComplexity: Defines the additional resources required to deploy the approach.

8. Scalability: Relates to the adaptability of the approach in regards to a large-scale DDoS de-
fense scenario with high-bandwidth attacks.

9. ServiceModel: Defines the cloud service model the approach most closely relates to.

Table 4.2: Qualitative Comparison of Approaches Toward Mitigation-as-a-Service

NFV Trusted
Computing

Secure
Logging

Network
Slicing

Security
1. Confidentiality Low Medium Low Low
2. Integrity Low High High Low
3. Availability High Medium High Medium
4. Reproducibility High High Low High
5. Tamper-Evidence Low Medium Medium Low
6. Timeliness High High Low Medium
Practicability
7. Deployment Complexity Low High High High
8. Scalability High Low Low Low
Scope
9. Service Model SaaS SaaS PaaS IaaS

Table 4.2 shows that no single approach satisfactorily addresses the trade-offs between security and
practicability and could, therefore, be used by itself for an independent trustless mitigation service.
NFV andNetwork Slicing have similar characteristics with respect to security due to their virtualized
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nature. While NFV virtualizes a single function in the network, Network Slicing aims to deliver a
portion of the network infrastructure as a service. To accomplish this, approaches likeAutoSlice [23]
help to automate the creation of on-demand slices per mitigation request. However, the infrastruc-
ture requirements such as the need for SDN based networking for the automatic creation of vSDNs,
increases the associated deployment complexity, thus limiting the applicability of this approach.

An NFV-based approach on the other hand, presents a lower deployment complexity. For exam-
ple, CoFence [195] can create VNFs upon demand to filter attack traffic, however, security aspects
of this approach can be easily tampered with to obtain the incentive related to themitigation service.
The Trusted Computing and Secure Logging approaches have high deployment complexity as strict
hardware requirements need to be considered. Logging is by default provided by anymitigation tool
and therefore has no deployment complexity, but secure logging requires a trusted platform to ensure
that the output of a mitigation action has not been tampered with. These deployment complexities
directly translate to poor scalability since a large number of TPM as well as Intel SGX [49] enabled
systems would be required to use a trusted computing approach at scale.

The service model metric differentiates individual approaches by correlating them with their re-
spective cloud service models. Table 4.2 presents this metric showing NFV and Trusted Computing
approaches follow a similarmodel as Software-as-a-Service (SaaS) since these are individual software
packages that provide the proof. In contrast, secure logging only provides logs identical to Platform-
as-a-Service (PaaS) cloud models where an interface to a service is provided. The approach with
the highest degree of access to the mitigation system is the network slicing approach where, similar
to Infrastructure-as-a-Service (IaaS), a complete virtualized networking infrastructure is provided.
Most discussed approaches are not clearly separable since they combine similar concepts. However,
these combinations lead to an increase in complexity and lack of scalability, which may appear that
combining these approaches could lead to a comprehensive solution that addresses all requirements.

4.3 Reputation Tracking

Aminimal level of trust needs to be established in a competitive environment. Solely relying on a vol-
untary contribution (i.e., accepting defense requests) creates a favorable environment for free riding
peers (consuming resources without contributing). Hence, a reputation scheme allows contributors
and consumers of the network to rate entities that request protection in a cooperative defense. A ba-
sic scenario illustrating fairness problems in the DDoS mitigation process can be divided into three
stages, as depicted in Table 3. Firstly, between the mitigation request by the DDoS attack target T
and the actual blocking of the malicious IP addresses by aM domainM. Secondly, after the delivery
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of themitigation service and the payment by domainT. Table 4.3 illustrates three possiblemitigation
histories and outcomes, depending on how T andM act.

Table 4.3: Cooperative Defense Scenarios with DDoS Attack Target T and Mitigator M

Stage: 1. Request 2. Service 3. Payment

Behavior: T requests M blocks T pays

T requests M blocks T refuses

T requests M refuses -

Whenever a M submits proof of mitigation, there is no automated way for other peers to build a
consensus on the quality of the service delivered [141]. In other words, the receipt in a “payment-
for-receipt” exchange process cannot be automatically issued by an SC, because in theworst case, any
upload is accepted as successful delivery and the DDoS T domain would pay for a worthless receipt.
Attack size and amount of payment are relevant factors that could result in severe financial losses for
the attack T. To avoid this problem, the reputation process depends on the attack T to validate and
rate the outcome of the mitigation service within an a priori agreed deadline.

It is reasonable to assume that the costs of T inflicted by the attack are higher than the costs of
the domain M, which is providing the mitigation service. A rational M would be better off not pro-
viding the costly mitigation service in the short term (i.e., betray). Also, T has strong incentives to
refuse payment (i.e., betray). Since in a repeated game, the roles of T andM could be swapped, they
are better cooperating because of future attacks. A reputation and incentive scheme can incentivize
peers because it records and stores past behavior. This data can be analyzed by other peers before
committing new transactions and can help them to make better decisions. The peers will preferably
transact with reputable colleagues. This leads to an increase in successful transactions overall, i.e., it
increases social welfare. The percentage of successful interactions can serve as a useful performance
measure to evaluate a reputation and reward scheme [251].

Furthermore, reputation points used to rate T and M are preferably not the same because a task
owner with a good rating does not necessarily need to be a goodM and vice-versa. Therefore, a rep-
utation earned asM is stored separately from the reputation earned as attack target or task owner. A
simple metric gives the analyzing peers a clear understanding of a peer’s reputation. There are two
types of reputable sources, subjective and objective. While the individual reputation is composed
of positive and negative ratings from other peers, the objective, historical metrics can be obtained
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from the public BC history. For example, the reputation system prototype in this thesis allows the
compute of the following metrics (among others):

• Customer age: The customer age can be derived from the block timestamp when the cus-
tomer ID was created.

• Number of interactions: Completed tasks (negative, positive, and unknown rating) and the
number of interactions for a customer are obtained through the public task states.

• Average satisfaction: The average satisfaction with a peer (ratio of positive and negative rat-
ings) signals the general satisfaction with this customer.

• Number of completed tasks: Observing the number of completed tasks over time helps to
compare historically with current customer performance.

4.3.1 Target and Mitigator Profiles

The behavior of the different customers (T or M) is summarized in Tables 4.4 and 4.5. These pro-
files were selected to build a reputation system that reveals freeloaders and false-reporters. Revealing
and expelling lazy customers can reduce free-riding. Similarly, exposing untruthful customers could
potentially reduce false-reporting. However, this is more difficult than detecting free-riding, because
such a fraudulent case needs close examination by a tribunal.

Table 4.4: Attack target (T) strategies: The satisfied T Acknowledges (ack) and Accepts the
Service if a Proof was Uploaded. The Dissatisfied T Always Rejects (rej) the Service

Strategy Description Strategy

Abort Start
(Payment) Rate

Uncooperative Aborts before payment ✓

Selfish Pays but does not leave
feedback ✓

Satisfied
Pays and gives positive
feedback if a proof was
uploaded

✓ + (ack)

Dissatisfied Pays, always gives negative
feedback ✓ − (ack)
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Table 4.5: Mitigator (M) Strategies

Strategy Description Strategy
Abort Approve Proof Rate

Uncooperative Aborts before approval ✓

Selfish Delivers no service (no
rating allowed) ✓

Satisfied Signs contract and uploads
proof but never rates ✓ ✓

Dissatisfied
Signs contract, uploads
proof and rates accordingly
to T′s expectations

✓ ✓ +/-

4.3.2 Beta Reputation Scores

An analysis of reputation scores based on different profiles forT andM based on a probabilistic repu-
tation engine presented by Jøsang et al. in [101] and Schlosser et al. in [218]. A Beta density function
is typically used to represent the distribution of binary events (α and β)with restriction variables that
define their thresholds:

fX(x : α, β) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1− x)β−1 (4.3)

Where:

• Probability (p) = 0≤ p≤ 1

• α and β = α≥ 0 and β≥ 0

In the case of the cooperative signaling protocol, α and β denote, depending on the final state of the
protocol (i.e., outcomeof interactions), binary values representing that a target ormitigator is satisfied
(positive) or not satisfied (negative). Then, to evaluate the probability for a customer c calculated as
the expected value:

E(p) =
α

α + β
(4.4)

Where:

• α = positive(c) + 1 and

• β = negative(c) + 1

The Beta function outputs reputation scores in a range of [0, 1], where 0.5 is the initial, neutral
score of every new customer. To analyze the reputation scores, it was defined a threshold in which no
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customer (i.e., T orM) is willing to work with a counter-party that has a Beta reputation lower than
0.3—accumulated positive and negative reputation values at one point in time. This value reflects
the probability of future positive interaction with customer c, based on its past positive and negative
ratings. Reputation points used to rate target andmitigator are preferably not the same because a task
owner with a good rating does not necessarily need to be a goodmitigator and vice-versa. Therefore,
the reputation earned as amitigator is stored separately from the reputation earned as an attack target
or task owner. A simple metric gives the analyzing peers a clear understanding of a peer’s reputation.
Further, a complex metric might lead to negative feedback loops [68]. The scores earned by ratings
from other peers (subjective ratings) and the total amount of transactions (objective metrics) are
equally essential to have a good understanding of a peer’s trustworthiness [256].

Since reputation is earned in interactions between peers i.e., T andM in BloSS, it can be attached
to transactions. BC is useful in building consensus about the reputation of all peers in the system,
providing an accurate and verifiable scoring engine. Repeated interactions and a definite interaction
history allow for building a reliable foundation of trust within the cooperative defense. Furthermore,
with incentives and penalties, users are more likely to behave according to the social norm. The rep-
utation scheme can prevent free-riding (attack targets) and false-reporting (mitigators) in the long
run by incentivizing rational behavior. However, reputation itself is not sufficient to discriminate
selfish and rational mitigators, because their behavior in terms of service delivery is similar. Selfish
customers, nonetheless, can be easily identified by looking at past interactions.

Further, the reward payment provides an incentive structure suited to discipline selfish customers.
A reputation scheme is a solution towards a marketplace of mitigation services where their behavior
might reward “good” mitigators. Mitigators will remember to apply the final service rating because
otherwise, they deprive themselves of payment. Similarly, targets (i.e., domains requesting cooper-
ative mitigation) can also be rewarded by a reputation scheme indicating a “good” payee. The rep-
utation system trades verifiability against customer anonymity since, for every transaction, the rep-
utation claim and owner are published on IPFS. A verifiable but untraceable reputation system can
guarantee the validity of each rating or review without explicitly linking the rating and the transac-
tion. Ideally, it should not be possible to infer the owner of the reputation statement (i.e., the rater)
from the reputation statement for a particular mitigation service. Vice-versa, knowing the reputa-
tion statement’s owner, the content of a particular rating should remain unknown. Nevertheless, the
reputation system should only store valid ratings.

104



4.4 KeyObservations

This Chapter presented a DDoS signaling protocol for cooperative attacks. The design considers the
challengesmentioned in the technical, social, economic, and legal scopes, allowing peers to exchange
information andmitigation services confidentially andwith incentives that can charge operational ex-
penses. The fact that the design is based on a software component that can be executed on standard
servers presents a more significant simplification of deployment and operation, resulting in greater
adoption of the cooperative solution. In this sense, members of the defense specify types of miti-
gation actions possible, and when requested, they can carry out these actions on-demand and at an
associated cost.

Since the design is based on contracts between peers, a MitigatorM can freely specify an amount
for the realization of a mitigation service, which could, for example, cover its operating expenses and
possible profits. Similarly, a Target Tmay check whether the service offered byM at the given price
is attractive. This can be based on an analysis of possible economic losses during periods of service
unavailability (due to the DDoS attack). Further, mitigation service prices are not controlled or bal-
anced (i.e., normalized acrossM’s) in BloSS, which allows members to freely set and negotiate prices
for mitigation services, as in a marketplace.

Although a pre-established level of trust is necessary to compose the members of the cooperative
defense, the design of the cooperative signaling protocol incorporated a reputation system to eval-
uate actions of both M and T; henceforth, existing reputation algorithms are incorporated into the
collaborative defense protocol to foster cooperation and build trust in the second scenario. Although
being a viable approach by eliminating the need for software/hardware mechanisms to verify an at-
tack’s mitigation, its sole use does not guarantee that a malicious peer will not perform malicious
actions. For instance, to subvert the reputation algorithm’s functioning, such as providing negative
feedback to peers who correctly execute mitigation requests or not provide feedback at all.

Lastly, the on-chain design’s significant benefits are the integrity of the information exchanged be-
tween members, which can be verified transparently between alliance members, and the provision
of methods for the exchange of incentives and feedback regarding the service of mitigation. These
benefits are contrasted with the need to maintain the confidentiality of the information exchanged,
even within the alliance. In this regard, Chapter 5 details how this aspect is addressed to ensure that
details about the mitigation service are open only to those involved in the contract.
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5
Design of the Blockchain Signaling System

This Chapter details the design decisions of the Blockchain Signaling System (BloSS), which is the
decentralized system interfaced with the on-chain cooperative protocol presented in Chapter 4. The
design considers similar assumptions to the protocol to minimize impacts and requirements on the
underlying network system. Thus, BloSS-dApp aims to be deployed on generic computers, providing
a web access interface for management and communication interfaces with network management
systems.

BloSS decouples the primary defense system logic from the underlying network infrastructure by
delegating network-specific tasks to individual modules. To further increase loose coupling between
the individual parts of the defense system, data exchange related tasks apart fromnetworking are also
separated into a purpose-built module. The modularization allows for the adaptability of the entire
system to different computing environments, including networking infrastructures apart from the
SDN-based networking (used as a proof-of-concept). Modularizing the data exchange capabilities
of the BloSS allows switching to a different data storage backends where the cooperative protocol is
deployed.
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5.1 Architecture

To better grasp the individual modules’ tasks, a metaphor was used as a basis for the naming scheme.
Figure 5.1 shows a flower, with each part of the flower representing a vital module of the BloSS. The
blossom of the flower represents the coremodule of the BloSS, which uses othermodules tomitigate
an attack. Data exchange is accomplished with the “Pollen” set of modules, and the “Stalk” module
handles network-related tasks. Pollen is divided intodedicatedmodules for the specificdata exchange
duties of the BloSS. This includes a module for access to the Ethereum, a data store module manag-
ing data on the InterPlanetary File System (IPFS)[17] and a database module to store statistics on
InfluxDB for demonstration purposes.

The pollen represent

data exchange

The stalk connects

to the underlying
networking

The blossom (BloSS)

binds all other
parts together

Figure 5.1: Metaphor for the Naming Scheme of the Individual BloSS Modules

An overview of the BloSS Decentralized Application (dAPP) is provided in Figure 5.2 detailing
connections between its modules. The BloSS is the component where each service provider taking
part in the cooperative defense, can post information about an ongoing attack to the Ethereum, i.e.,
the connector to the on-chain contracts. It uses a REST interface to facilitate the isolation of the
BloSSmodule, encapsulating the entiremodule togetherwithPollenBCandPollendata store as SDN
applications and, possibly, as a VNF running on commodity hardware. The goal of this design is not
to impose restrictions on the underlying networking hardware, further simplifying the interaction
with the BloSS and its modules via REST interfaces.

Data exchange is accomplished with the “Pollen” set of modules, and the “Stalk” module handles
network-related tasks. Pollen is divided into dedicated modules for the specific data exchange duties
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Figure 5.2: Architecture of the Blockchain Signaling System (BloSS). Ethereum Denotes the
On-chain Cooperative Network

of the BloSS, which includes a BCmodule for access to the Ethereum, a data storage module manag-
ing information on the IPFS. Attack information posted to the BC is not directly stored on the BC
due to limited block sizes and to maintain the information confidential. For this purpose, IPFS is a
decentralized and highly scalable storage solution to hold attack information. Each service provider
running the BloSS also maintains an IPFS node to enable the decentralized storage. Whenever a
new set of attack information is posted, the data is first stored in IPFS, and only the hash as a unique
identifier of the storage location within IPFS is stored in a block on the Ethereum.

The Pollen data store also includes an encryption component. The encryption of attack informa-
tion posted to IPFS ensures the confidentiality and the integrity of the attack information based on a
per-message signature bundled with the attack information. Confidentiality is an essential attribute
of the data exchange between service providers since the attack information can be sensitive to im-
plicating individuals both as victims of an ongoing DDoS attack.

Verifying the integrity of attack information allows for holding each service provider account-
able for the information posted to the BC and makes forgery of attack information impossible. The
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integrity-check is enabled through a public key published by each service provider to the BC and
available to providers participating in the BloSS defense alliance. Without thismeasure, forgery of at-
tack information would allow amalevolent party to indicate specific IP addresses as being the source
of an ongoing attack and block flows from these addresses to the T address specified in the attack
information.

5.1.1 BloSS Module

The smallest module of the entire BloSS is the namesake module of the system: The BloSS module.
The BloSS module has been decoupled from Stalk and Pollen to allow for a more network-agnostic
system that would also facilitate a VNF-based encapsulation of the core parts of the BloSS, consisting
of two classes as illustrated in Figure 5.3. The BloSS RESTAPI receives attack reports from the Stalk
module running on the same machine and posts these attack reports to the Pollen module. It also
maintains an API mapping to receive requests from the Stalk module to set a specific attack report
to “block” the to signal that the report has been addressed. Conversely, the manager periodically
retrieves attack reports from the and sends the decrypted reports directly to the Stalk REST API to
be blocked.

Manager

APIREST

Figure 5.3: Classes of the BloSS Module

5.1.2 Pollen Module

All data-exchange apart from basic networking handled by Stalk is taken care of by the Pollen mod-
ule. Pollen, therefore, consists of a multitude of specialized classes, as illustrated in Figure 5.4. These
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classes handle Ethereum access (PollenBlockchain), IPFS storage (PollenDatastore and PollenEn-
cryption), and InfluxDB management (PollenDatabase). An additional helper class to handle attack
reports (AttackReporting) provides simple parsing and processing capabilities to make sure attack
reports are always formatted correctly and did not yet expire.

PollenBlockchain
PollenDatabase

AttackReporting

AttackReport
AttackReport

PollenDatastore

PollenEncryption

Figure 5.4: Classes of the Pollen Module

The PollenDatabase class is only used to enable the centralized storage of traffic information for
visualization in Grafana [119]. It is important to note that PollenDatabase is not an integral part of
the Pollen module or the BloSS as a whole and only serves as a debugging and demonstration tool
since it would otherwise be complicated to gather the traffic information of multiple BloSS instances
to figure out whether and were a problem exists. The centralized aspect of the InfluxDBwhere traffic
information is stored would defeat the goal of building a decentralized and scalable DDoS defense
system, which is why it is essential to state the demonstration-focused nature PollenDatabase clearly.

5.1.3 Stalk Module

The stalkmodule consists of twomain classes, directly communicating with the underlying network-
ing infrastructure—the controller and the simple router. While the simple router enables the correct
forwarding of packets between ASes through the SDN switches, the controller analyzes flows from
the same SDN switch and detects ongoing attacks. Ryu [241] is used to communicate with the SDN
networking infrastructure, allowing the prototyping of SDN controllers directly in Python.
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SimpleRouter

Hosts

Host

Attackers

Host

Attackers

APIREST

FlowStatisticsManager

FlowStatistics

Flow Flow

Figure 5.5: Classes of the Stalk Module

Analyzing traffic to find potential attackers is the main task of the Stalk controller. Traffic flows
received from the SDN switch are stored in the flow statistics manager. From there, bytes transferred
and received for each flow are written to the corresponding source or destination host. The host
objects are generated while initializing the Stalk controller and are comprised of all hosts managed
by the controller as specified in config.ini.

1 def _request_flow_statistics(self):
2 ...
3 parser = datapath.ofproto_parser
4 request = parser.OFPFlowStatsRequest(datapath)
5 datapath.send_msg(request)

Listing 5.1: Requesting Flow Statistics in Stalk Controller

To receive detailed traffic flow information in the first place, the Stalk controller has to send flow
statistics requests continuously as shown in Listing 5.1, which will cause the SDN switch to answer
with the needed data. Access to SDN-specific functions works through decorators in Ryu, which are
bound toOpenFlow events such asEventOFPFlowStatsReply to receive flow statistics replies from the
SDN switch.

Whenever traffic volumes transferred or received are written to the corresponding source or des-
tination host, the volume of traffic is checked against a threshold. If the traffic exceeds the threshold,
the remote source of the traffic is noted as being a potential attacker.
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As soon as the average traffic throughput volume for a host during a specified timewindowexceeds
a threshold, the attackers are once again updated with the current traffic volumes and whether their
throughput still exceeds the threshold and the resulting list of attackers is then used to compile an
attack report. This attack report is then sent through the Python requests library directly to the BloSS
REST API endpoint on the same machine.

The Stalk REST API serves as the connecting link between the BloSS module and Stalk and only
consists of a simple PythonFlask appmaintaining the /api/v1.0/mitigatemapping to receive requests
to block attackers from the BloSS module.

1 def block_attackers(self, attack_report):
2 ...
3 ofproto = datapath.ofproto
4 if attack_report.action == "blackhole":
5 instructions = [
6 parser.OFPInstructionActions(
7 ofproto.OFPIT_CLEAR_ACTIONS ,
8 []
9 )

10 ]
11 else:
12 instructions = []
13 blocking_duration = (
14 self._config['INTERVAL']
15 ['MAX_BLOCKING_DURATION_SECONDS']
16 )
17 mod = parser.OFPFlowMod(datapath=datapath ,
18 command=ofproto.OFPFC_ADD ,
19 priority=999,
20 idle_timeout=blocking_duration ,
21 hard_timeout=blocking_duration ,
22 match=match ,
23 instructions=instructions)
24 datapath.send_msg(mod)

Listing 5.2: Blocking Attackers Based on an Attack Report

Thismitigation service of receiving attack reports and blocking the contained attacker addresses is
the second task of the Stalk controller. Blocking works on a per-flow basis including a source address
(the attacker) and destination address (the attack target). Listing 5.2 shows the relevant Python code
to block a single flow. This is accomplished by creating a new flow with a very high priority of 999
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which specifies to clear all other actions specified for this flow. The old flow specifying the packet
forwardingwith the corresponding out-portwill therefore be overruledwith this newflowdefinition.
The blocking flow is however not permanent and will only exist for a pre-defined time window in
order to allow the flow to normalize and avoid blocking benign traffic.

5.1.4 PollenBlockchain Module

PollenBlockchain is capable of automatically creating the system contracts upon initialization, as il-
lustrated in Figure 5.6. It first checkswhether a system contract address is already defined in config.ini,
and if this is not the case, it uses the solidity compiler [144] to create the solidity bytecode which is
then deployed through PollenBlockchain. After deploying a system contract, it needs to be regis-
tered with the relay contract to specify which subnets the system contract is responsible for. This
is accomplished with a direct transaction from PollenBlockchain to the relay contract. Ethereum-
related transactions go through the Web3 Python library [147], which is connected to the RPC API
of the geth Ethereum node running on the controller.

PollenBlockchain

RelayContractSystemContract

1. Initialize PollenBlockchain by
    compiling and deploying the
    system contract if needed and
    post the public key to the relay
    contract

PollenBlockchain

PollenDatastore

IPFS
PollenEncryption

2. Retrieval or reporting of attack
    reports goes through PollenDatastore 
    and PollenEncryption to manage
    reports off-chaint

Figure 5.6: Duties of the PollenBlockchain Class. Left: Initialize System Contracts. Right: Re-
trieval and Storage of Attack Reports.

Access to the RPCAPI is limited to localhost connections by default, which is why the geth Node
needs to run on the same controller as the BloSS instance. Apart from deploying contracts, the Pol-
lenBlockchain class posts the public key used to encrypt and sign attack reports to Ethereum. This is
the last step in the initialization and ensures that the public key available always represents the cor-
rect key set up in the BloSS instance. After the initialization is done, the PollenBlockchain class is
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a passive entity that provides three main functions to other classes: Reporting and retrieving attack
reports and marking attack reports as blocked in the system contract.

5.2 Defense Scenario

Figure 5.7 shows a prototypical defense scenario involving an M as well as T’s AS. Attack detection
is outside the scope of the BloSS so the first step includes compiling the attack information and en-
crypting it to post the IPFS hash to the Ethereum later. Attack information hash is connected to a
Boolean, indicatingwhether the information has already been accessed byM’s AS to block the attack-
ers. This is done to reduce access to IPFS and Ethereum to access attack information and the public
key ofT’s AS.However, incentive schemes necessary to realize a trueMitigation-as-a-Service (MaaS)
offering, as outlined in [141], are out of the scope of this implementation of BloSS.

BloSS on target AS Ethereum IPFS BloSS on mitigator AS

Encrypt attack information
about ongoing attack

Store encrypted attack information

Post attack information IPFS hash

Retrieve attack information hash

Request if attack information hash is set to blocked

Retrieve encrypted
attack information

Retrieve public key of target AS
Verify attack information signature,
decrypt it and block attacker IPs

Set attack information hash to blocked

alt [not blocked]

Figure 5.7: BloSS Defense Scenario Including a T and an M, ASes

5.2.1 Signaling Attacks

Anattack report specifies the networkof the attackers. This is used to enable efficient signaling among
a large number of ASes in the Ethereum. A single relay contract keeps track of networks participating
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Attack Report
target: 192.168.30.18

action: blacklist

addresses: [”192.168...

timestamp: 2018-07-31 ...

...

RelayContract

SystemContract

AS 100192.168.10.0/24

SystemContract

AS 200192.168.20.0/24

SystemContract

AS 300192.168.30.0/24

Figure 5.8: Example of an Ethereum Contract Setup with the Relay and Cooperative Signaling
Protocol Contracts

in the collaborative DDoS defense and maps each network to the system contract managing that
network. As soon as an attack report is posted to the relay contract, it directly sends it to the correct
system contract to allow the responsible BloSS instance to act on it.

This relaying of attack reports represents a significant change from the old system, where only a
single, smart contract was responsible for attack reports. With the new system, it becomes possible
to implement a simple access control scheme where only the owner of a specific system contract can
access the attack reports stored in that contract. Due to the openness of the Ethereum, this simple
scheme does not deter determined third parties to access the attack reports stored in any contract
by examining the individual blocks and finding the point at which the report has been stored. Apart
from simple access control, this scheme does, however, also allow to reduce the number of calls nec-
essary for a specificBloSS instance to get the attack reports it is interested in, e.g., the onesmentioning
attackers from a network it is managing. The number of networks managed by a single system con-
tract is not limited, and the system contract registers the network for which it wants to receive attack
reports with the relay contract.

System contracts also represent an essential part of the encryption scheme since the public keys
required to encrypt symmetric keys for the encryption of attack reports and to sign said attack reports
are stored directly in a system contract. Since only the creator of the system contract, i.e., the BloSS
instance responsible for networks that the system contract was registered for, can change the smart
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contract’s fields, only they can change the public key. Thismeans that building upon the secure ledger
inherent in the Ethereum allows us to build a highly decentralized but still secure signaling system.

5.2.2 Attack Report Information

Theattack information is the communicationpayloadexchangedbetween individualBloSS instances,
i.e., the file that describes the request for a mitigation action on attackers’ IP addresses. It carries the
relevant data to indicate the target and the source of an attack, enabling the collaborative mitigation
of a large-scale DDoS attack directly at the source. Following data points are part of the attack infor-
mation (also listed in 5.3):

1 class AttackReport(object):
2 def __init__(self, target , action , timestamp ,
3 subnetwork , addresses , hash=None):
4 self._target = self.target = target
5 self._action = self.action = action
6 self._timestamp = self.timestamp = timestamp
7 self._subnetwork = self.subnetwork = subnetwork
8 self._addresses = self.addresses = addresses
9 if (hash is None and target is not None

10 and action is not None
11 and timestamp is not None):
12 self._calculate_hash()
13 else:
14 self._hash = hash

Listing 5.3: Fields of the Attack Report Implemented in BLoSS

• Target: The IP address being targeted by a DDoS attack.

• Action: Action to take against the attack. In the version of the BloSS outlined in this thesis,
this is limited to the “blackhole”[163] action discarding attack traffic directly.

• Timestamp: The purpose of the timestamp is to ensure that outdated attack information is no
longer considered for blocking, making sure that no unwanted side effects can occur.

• Network: The network address in which attacker addresses belong.

• Addresses: IP addresses of the attackers.
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• Hash: A hash computed from the target address, timestamp, network, and action. This hash
is used to identify a set of attack information uniquely.

There are two essential considerations in this file. The first is related to the confidentiality of the
information in the report, and the second is related to performance, considering that this file can be
relatively large, depending on the scale of the attack. A single attack might often produce multiple
attack reports since each report represents a specific network of attackers to simplify the attack’s mit-
igation. Based on the network, the attack report can directly be sent to the ASmanaging the network
from which the attack originates.

The JSON [24] format was selected for exchanging object information among BloSS instances. It
has a lightweight design to transmit data and allows simplifying operations in the Python ecosystem
around BloSS. Listing 5.4 shows an example of a JSON signaling list.

1 {
2 target: "192.168.10.5",
3 action: "blackhole",
4 timestamp: "2019-10-10T08:32:02+00:00",
5 subnetwork: "192.168.30.0/24",
6 addresses: {
7 "123.123.125.123",
8 "190.23.65.86",
9 "169.56.85.74",

10 "69.58.74.85"
11 }
12 }

Listing 5.4: Example of Storing IP Address Lists Formatted as JSON Objects

For every host, there is a list of attackers assigned (i.e., blacklisted in the field ’addresses’. The ex-
ample in Listing 5.4 shows two attacked hosts listed behind the keyword target and each of them
has a list of four attackers assigned to them.

5.3 Off-chainData Exchange

Pollen datastore includes an encryption component not directly visible in Figure 5.2 since it is an
inherent part of the entire module. The encryption of attack information posted to IPFS ensures the
confidentiality and the integrity of the attack information based on a per-message signature bundled
with the attack information. Confidentiality is an essential attribute of the data exchange between
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ASes since the attack information canbe sensitive in regards to implicating individuals both as victims
of an ongoing DDoS attack or as the perpetrators of said attack.

Encryption and decryption are built with the Python Cryptography library [61] and the choices
for cryptographic algorithms and key lengths and other cryptographic details are based on an article
by Colin Percival [184]. PollenEncryption uses both asymmetric cryptography through RSA with
2048 bit keys and symmetric cryptography through Fernet, which is essentially the Advanced En-
cryption Standard (AES) block cipher in Cipher Block Chaining (CBC) mode using a 128 bit key
[61].

Asymmetric encryption is used for two tasks in PollenEncryption: To encrypt the symmetric key
and cryptographically sign the unencrypted attack report with the private key of the sender (cf., Fig-
ure 5.9). Signing the attack report with the private key allows the receiver to verify the authenticity
of the attack report using the public key available on the BC for cryptographic verification. Instead of
directly encrypting the attack report through asymmetric encryption, the symmetric Fernet scheme
is used. Asymmetric encryption is useful since no secret key exchange has to occur. However, it is
not well suited to encrypt large amounts of data since the size of data to be encrypted cannot exceed
the key size of 2,048 bit [184].

Attack Report
target: 192.168.30.18

action: blacklist

addresses: [”192.168...

timestamp: 2018-05-25 ...

...

Fernet Encryption

RSA Encryption
with Public Key

Attack Report
target: 192.168.30.18

action: blacklist

addresses: [”192.168...

timestamp: 2018-05-25 ...

...

Signature

JSON {                                           }

IPFS

RSA Signing
with Private Key

Figure 5.9: Encryption Procedure for Off-chain Data Transfer via IPFS
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After encrypting the attack report and symmetric key and signing the attack report, all three com-
ponents, signature, encrypted symmetric key, and encrypted attack report, are stored in IPFS as a
JavaScriptObjectNotation (JSON) object for straightforward handling through the Stalk andBloSS
REST APIs. In addition to encrypting each set of attack information when posted to IPFS, com-
munication between the Pollen datastoremodule and IPFS is encrypted with the libp2p-secio [120]
stream security transport, which is basedonTLS1.2. Transport encryptionwouldnot be strictly nec-
essary since the data being transported is already encrypted. However, this allows a certain degree
of anonymization for the defense system users since it is impossible to ascertain which AS accessed
which attack information when merely looking at the communication between IPFS and AS. This
added anonymity is an additional factor contributing towards increased confidentiality.

Communicationsbetween individualEthereumnodes are also encryptedasdetailed in theDEVp2p
[253], which contributes to increased confidentiality. However, due to the distributed ledger char-
acteristics of Ethereum, transactions can be traced back to the party responsible for the chain. The
last part of the communication chain with the REST interface between BloSS and Stalk is not en-
crypted. This is by design since the REST interface is designed to only be accessible on the same
machine to allow for simple communication between BloSS and Stalk while enabling a high degree
of encapsulation for the BloSS module in order to allow the implementation of Proof-of-Mitigation
schemes.

5.4 BloSSManagementDashboard

In a context where ASes rely on cybersecurity specialists to make critical decisions regarding threats,
it is necessary to structure and categorize data such that visualization “makes sense” to the analyst
[230]. As a cooperative defense involves multi-disciplinary concepts and the decision-making pro-
cess usually requires a low response time from the user, selecting an appropriate type of graphical
representation and flow of interaction is not a straightforward task [126].

As mentioned in the Bloss Module Section 5.1.1, the system is modular based on management
API’s providing interaction either via terminal or a Web-based interface. In this regard, Figure 5.10
to enable communication with the front-end dashboard by collecting and encapsulating information
from the various BloSS components. The Express REST API communicates with two components
to feed the dashboard: Stalk and BloSS. While BloSS is the core component which receives mitiga-
tion requests and signals ongoing attacks through Pollen and stops attack traffic, Stalk monitors the
network traffic of the underlying networking infrastructure.
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Figure 5.10: Communication of BloSS Core Components (bloss-core) with the REST API

Then, the BloSS node facilitate the relaying of information to the dashboard, whose challenge is
to reduce the complexity of information provided to a network operator to support decision-making
without adding the overhead of unnecessary information. In the presented use cases (cf., Chapter
6), a new alarm is displayed to and evaluated by the human operator. An alarm can be classified as a
valid threat andwhethermitigation should be requested, or the alarm can be ignored. Thus, the com-
plexity is reduced and based on a known layout from software development (e.g., the Kanban board
[173]), leading to a lowentry barrier of understanding the user interface. Thedashboard remains pre-
dictable as the main layout does not change, and empty states (e.g., no new MREQ) indicate where
new elements have to appear in the layout.

Figure 5.11: Schematic View of the Network Operator’s Dashboard
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Figure 5.11 illustrates the three main sections, the status of the system components, the visualiza-
tion of requests for collaborative defense on theMitigator’s (M) side, and the alarms tab allowing the
request for collaborative help on the Target’s (T) side. An AS may act either asM or T, so these tabs
are available to the network operator. These tabs display three columns with progressing states from
left to the right, in which the left row contains new events [173]. The middle row comprises events
in progress and updates them accordingly to changes in their status. The right row represents a log
of elements finished or declined. The REQUESTS_TAB contains incomingmitigation requests. The
ALARMS_TAB contains alarms thatwere triggered as soon as a pre-defined inbound traffic threshold
breach occurs. The REQUESTS_TAB contains incoming mitigation requests.

Combining meaningful naming and appropriate coloring of states enhances the user experience
for the analyst. It is crucial to standardize the use of colors in security visualization [75] to enhance
rapid information processing. As already indicated in Figure 5.11, the colors are chosen according
to their meaning in the process context. The state management, therein the naming and coloring of
states is another crucial part of security visualization indicating the perspective of the AS.

5.4.1 Target Interaction Flow

The state diagram is triggered by a DDoS attack by nodes from other networks, operated by other
ASes. In short, the AS of the attacked target will issue an attack report to the BC, which will be
retrieved by the AS of the attacking nodes, henceforth called Mitigator (M). First, a network moni-
toring system sends traffic data to BloSS, determining whether the pre-defined traffic thresholds are
breached. For each breach, an attack report is sent to the BC and persisted with an initial status of
NEW_ALARM if the same attack report hash has not been persisted yet.

The lifecycle of an attack report starts with the state NEW_ALARM as soon as a traffic breach oc-
curs. The analyst of the target AS has to decide whether the attack should be reported or not (hence
ignored). If the analyst ignores the alarm, the attack report changes state to ALARM_IGNORED and
the lifecycle of the attack report ends. Otherwise, it is possible to request the cooperative mitigation
and the state changes to REQUEST_MITIGATION_REQUESTED. This means that the attack report
is submitted to the BC and retrieved by the Mitigator ASes. It is important to note that at this point,
an attack report with the state of NEW_MITIGATION_REQUEST is created on the Mitigator’s side
(as soon as it was retrieved from the BC), hence starting the state machine in Figure 5.13.

Further, theMitigator decides whether or not to accept the request for mitigation. If the request is
declined, the state changes to REQ_MITIGATION_DECLINED and the lifecycle of the attack report
ends. Otherwise, the state changes to REQ_MITIGATION_ACCEPTED, meaning that the mitiga-
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Figure 5.12: State Diagram to Request Mitigation

tor AS will block any harmful traffic. Therefore, from the moment that the mitigator starts blocking
traffic, the state changes to REQ_MITIGATION_IN_PROGRESS. After the blocking time expires,
themitigation successfully ends, and the lifecycle of the attack report changes to the state of REQ_-
MITIGATION_SUCCESSFUL.Then, the AS of the attackers’ origin will retrieve the attack reports and
decide whether to accept the requests. From here on out, the process from the target’s perspective is
finished.

5.4.2 Mitigator Interaction Flow

An AS with the role of mitigator periodically checks for attacks signaled i.e., reported on its SC. For
example, when an AS is under attack, it can report the attackers directly on the SC of ASes respon-
sible for the networks, from where the identified hosts originated. In this regard, BloSS instances
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Figure 5.13: State Diagram to Decide on Mitigation Requests

are configured to periodically check for changes in the states of their Smart Contracts, i.e., whether
there are requests, and further creating events on the dashboard and updating whenever their status
is changed. As soon as an attack report is reported and retrieved via IPFS, it is persisted in BloSS and
displayed in the dashboard with an initial status of NEW_MITIGATION_REQUEST if the same attack
report hash has not been persisted yet.

The analyst on the mitigator M side has to decide whether the mitigation should be accepted. If
the analyst declines, e.g., provided incentives are not attractive, or the AS is unavailable to perform
the requestedmitigation; the attack report state is modified to MITIGATION_REQ_DECLINED and
the lifecycle of the attack report ends. Otherwise, the state changes to an intermediary state of
MITIGATION_REQ_ACCEPTED.

As soon as the AS performs the requested mitigation, traffic of reported attackers (hence miti-
gating the attack), the state changes to MITIGATION_REQ_IN_PROGRESS. When the mitigation
is confirmed and relayed to the dashboard, the mitigation successfully ends, and the lifecycle of the
attack report changes to the state of MITIGATION_REQ_SUCCESSFUL.
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5.5 KeyObservations

This Chapter introduced the decentralized BloSS application, which interacts with the cooperative
signaling protocol deployedon-chain. While the on-chain protocol regulates the interaction between
alliance members, BloSS is responsible for the interface with the protocol and the network manage-
ment system, which, as a proof of concept, was based on SDN.Hence, BloSS is responsible for storing
specific configurations for eachmember, such as the definition of reputation thresholds or legal spec-
ifications concerningwhichmembers in certain regions the cooperation can bemade. Also, amounts
are determined for calculating the incentive required to be paid in the event of attacks and the amount
for possible mitigation services.

ThefieldofDDoSdefense systemcontains an increasingnumberof competing approaches to solve
the multi-domain DDoS mitigation problem. The BloSS is best comparable with the decentralized
hybridmechanisms as presented inChapter 3. These approachesmainly differ in the communication
mechanism they employ.

While the DOTS architecture pioneered by the IETF is built on top of a purpose-built communi-
cation protocol specifically designed for the use inDDoS defense signaling, other approaches such as
DefCOM base their communication mechanisms on existing overlay network technology to enable
signaling in a peer to peer manner [169]. Compared to these two approaches, BloSS is more akin to
DefCOM than DOTS since it also builds on an existing system in the form of the Ethereum block-
chain instead of developing a new communication approach from scratch. Leveraging the highly dis-
tributed nature and secure ledger aspects of blockchains allows the BloSS to securely and easily scale
to the demand of a modern distributed DDoS defense system based on SDN (underlying manage-
ment system) or NFV (scaling mitigation actions on attacking traffic). DefCOM on the other hand
relies on complex peer to peer message exchanges that are more prone to failure than the consensus-
based blockchain system utilized by the BloSS.

By building the demonstration implementation of the BloSS with SDN and NFV-capability in
mind, advantages of quick deployment inherent to competing systems like CoFence [195] or Bo-
hatei [69] are already part of the re-engineered BloSS.With themodular aspect of the BloSS inmind,
BloSS is not limited to SDNbased networking infrastructures or only being able to provide the BloSS
as a NFV-based solution, but can adapt Stalk (i.e., the networking module of the BloSS) to various
infrastructures while still maintaining the simple, yet efficient RESTful interface between the BloSS
module and Stalk.

Lastly, BloSS leverages theBCcapabilities to define individual agreements or conditions in a smart
contract to perform a mitigation service in cooperative network defense. Conditions to perform a
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mitigation service are described in an individual smart contract, which expresses the networks man-
aged by a peer and the conditions (e.g., cost to operate the infrastructure) to perform amitigation ser-
vice. In amitigation request, service and validation timeouts are agreedbetween the peers to establish
deadlines for mitigation service completion and the payout of the reward (cost) upon submitting a
mitigation proof.
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6
Evaluation

BloSSwas evaluated in different stages (i.e., locally and globally) and scopes (individual components)
to emphasize its simplicity of deployment and operation for the signaling of DDoS attacks. Consid-
ering these different stages and scopes, an organization of the these different evaluations scopes is
presented in the beginning of the Chapter. Further, the summary of achievements and their respec-
tive discussions concerning how cooperative defenses tackled challenges is presented at the end of
the Chapter.

Local evaluations aims at assessing the functionality and correctness of BloSS components for sub-
sequent global evaluations, mainly for assessing the on-chain cooperation protocol that rejects the
operation of BloSS. Global evaluations relied on the configuration of an Ethereum-based blockchain
network based on Virtual Machines deployed with BloSS instances to evaluate performance aspects
(end-to-end latency) of each possible outcome of the on-chain cooperative protocol, as well as the
latency for o off-chain exchange data via IPFS.
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6.1 Roadmap of BloSS Evaluations

Several evaluations were performed during the development and refinement of the system to achieve
the version presented in this thesis. This Section outlines their specific goals toward reaching the
overall thesis goals.

1. BloSSFunctionalityandCorrectness (Section6.2): evaluationsperformedat the local pro-
totype and deployed in the cluster depicted in Figure 6.1 to evaluate overall correctness and
functionality (e.g., signaling addresses, mitigating attacks, interaction with Ethereum).

2. DashboardUsability (Section 6.3): evaluation performed in the local cluster improving the
previous system with a focus on improving usability. Thus, a dashboard was designed and
deployed in a modular version of BloSS in order to simplify its usage.

3. Off-chain Signaling Latency (Section 6.12): evaluation performed both locally and glob-
ally, in which the goal was to evaluate the performance in terms of latency of the off-chain
communication channel based on an encrypted channel.

4. Reputation Scores (Section 6.5): performed locally based on a emulation environment to
create multiple contracts of target’s and mitigator’s. The goal was to evaluate the behavior of
beta reputation thresholds and the interaction of peers over time (e.g., how many interactions
needed to accept or deny interactions). Summarized results of the experiments are presented
within the section and expanded results are presented in Appendix D.

5. Cooperative Signaling Protocol Latency (Section 6.6): evaluation performed locally and
globally. The goal was to assess the correctness of the protocol in local assessments (a simu-
lation based on Truffle and based on the Rinkeby Ethereum testnet). The goal of the global
evaluation was to assess the signaling performance (in terms of latency) in all possible out-
comes of the protocol, as well as its difficulty of deployment and operation in VM’s across the
world.

6. Smart Contract’s Vulnerabilities (Section 6.7): based on local experiments using different
automated vulnerability assessment tools. The objective was to identify, analyse and compare
the findings in termsof vulnerabilities in theBloSSSCs. Results of the analysis are summarized
within the section based on the list of vulnerabilities available in Appendix E.
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6.2 BloSS Functionality andCorrectness

BloSS was deployed on a physical single-board computer cluster (cf. Figure 6.1). Three isolated and
identically configured ASes were built: AS 400, AS 500, and AS 600 with each AS consisting of four
host nodes used to initiate the attack traffic, and two controllers, which host the BloSS as well as the
EthereumBC and IPFS [17] nodes. Hosts are based onRaspberry PiModel B (RPi), and controllers
use ASUS Tinker Board devices, which provide greater computational capacity than RPIs.
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(a) Schematic Representation (b) BloSS Hardware

Figure 6.1: BloSS Schematic View and Hardware Prototype

The schematic representation (cf. Figure 6.1) at the left-hand side (a) shows the network con-
figuration in the BloSS hardware (b). The management network is configured via wireless between
the three routers, the two auxiliary controllers, and the gateway. Furthermore, additional MikroTik
routers and switches are necessary since the Zodiac FX switches only provide four ports, which is not
sufficient to connect all hosts of an AS. The SDN controller responsible for the Zodiac FX switches
is directly specified in the Zodiac FX Web interface.

6.2.1 Configuration

BloSS has been evaluated by utilizing the iperf network bandwidth measurement tool [240]. An in-
stance of iperf is installed on the last compute node of AS 600 with IP address 192.168.30.18 and is
listening for incoming iperf connections on UDP port 5000. To start an attack, the following com-
mand is issued to all hosts from AS 400 and AS 500:

# iperf -c 192.168.30.18 -u -b 20m -t 10 -i 1 -p 5000
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The remaining three hosts from AS 600 (192.168.30.15, 192.168.30.16 and 192.168.30.17) are
idle throughout the attack since it is impossible to block traffic flowing from them to the target host
192.168.30.18. Only traffic between ASes goes through the SDN switches and can, therefore, be
affected by the SDN controller. Intra-AS traffic does however go through the switch and router to
which all compute nodes of an AS are connected. This is based on the limited number of Ethernet
ports on the Zodiac FX switches.

6.2.2 Signaling Latency

This is an important aspect to show that BloSS is capable of mitigating attacks regardless of whether
the attack volume accounts tomore than eight times the available throughput of the target system (in
the case of the experiment with 100MBit/s bandwidth per attacker) or only around 80% of the avail-
able throughput. To evaluate the delay from the start of an attack to the attack being entirely blocked
by the cooperative defense, traffic statistics from InfluxDB were used. PollenDatabase, the database
component of the Pollenmodule, posts traffic volume information every second to the InfluxDB. To
get the delay, only database entries with a bandwidth value of over 1 Mbit/s were considered since
these correspond to the entries written during the attack. Since traffic information is written every
second, a select statement was performed to count the number of returned rows corresponding to
the amount of time passed from beginning to end of the attack.

This does only work if only a single attack in terms of volume is present in the database. To ensure
thiswas the case, thedatabasewas routinely clearedbefore eachattack toeliminateold attackvolumes.
Table 6.1 shows delays recorded for 4 different bandwidths and over 10 attacks for each bandwidth.
The bandwidth is set per compute node, which means at a bandwidth of 10 Mbit/s, a total attack
volume of 80 Mbit/s is created and routed toward the target compute node.

Table 6.1: Delay Until Attacks with Different Bandwidths are Blocked

Bandwidth /Delay [Mbit/s] 10 Runs [s] Average [s]
10 34 34 28 20 28 27 26 37 23 19 27.6
20 32 18 34 18 28 31 32 31 16 32 27.2
40 34 25 39 24 31 35 25 29 31 24 29.7
100 34 26 40 29 29 24 35 28 36 35 31.6

It is important to note that one of the most significant contributing factors to the delay is the
block period of 5 seconds. After sending an attack report, 5 seconds pass until the attack report
becomes available to all BloSS instances. Since attack reports are based on subnetworks, a mini-
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mum of two reports need to be sent out to cover the two attacking subnetworks 192.168.10.0/24
and 192.168.20.0/24. If one of the attacking hosts is detected with a delay, another attack reports
need to be filed, which consumes another 5 seconds. The average mitigation time of around 29 sec-
onds overall experiments shows that the BloSS is a fast-acting mitigation solution capable of quickly
diminishing even high-bandwidth threats.

6.2.3 CPU Overhead

The additional processing resources required to run the BloSS are a vital metric to decide whether it
is worth tolerating the added strain on the CPU to mitigate DDoS attacks that could otherwise not
be handled due to their distributed nature. The analysis consists of full mitigation, including eight
attack hosts and one target host with a total attack volume of 160 MBit/s. The experiments are split
into mitigations with encrypted attack reports and mitigations with encryption turned off entirely.
With this differentiation, the added confidentiality provided through the encrypted attack reports
can be contrasted with possibly increased CPU usages.

Table 6.2: CPU Usage Statistics [%]

CPUUsage AS 400 AS 500 AS 600
E P E P E P

Minimum 5.8% 4.8% 8.2% 6.6% 8.8% 8.4%
Maximum 21.2% 18.2% 27.8% 24.6% 34.4% 34.6%
Average 13.2% 10.5% 17.2% 14.8% 16.3% 15.8%
Median 13.4% 10.3% 16.9% 17.8% 15% 14%

Legend: Encrypted (E), Plain-text (P)

In order to better understand the variations in CPU usages between the two scenarios with and
without encryption, minimum, maximum, average, and median CPU usage across all ASes and all
runs per experiment have been compiled into two tables. Each entry represents the average over five
runs for the specific statistical indicator, and AS. Table 6.2 shows statistics for the five runs with en-
cryption turned on (E - Encryption) and off (P - Plain-text). Apart from the ability of the BloSS to
quickly mitigate attacks, it should not consume too many resources while doing so. The ten exper-
iments suggest that the highest degree of CPU usage occurs at the point in time when attacks are
reported to the BC or retrieved by the mitigators.

An interesting aspect lies in the statistical metrics that show over 5 experiment runs each, that the
difference in CPU usage between the BloSS instances entirely relying on encryption is only around
2% higher than the other half of the experiments with encryption turned off. This is a clear indicator
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that encryption does not add considerable overhead to the BloSS and can, therefore, safely be left
turnedon, especially considering that encryption provides a high degree of confidentiality and allows
to ensure the integrity of the attack reports through the verification of cryptographic signatures.

6.2.4 Discussion of CPU Overhead and Signaling Delay

By collecting CPU usage information for a short period before and after the attack occurs, it can also
be shown that the attack itself does not contribute to a considerable increase in CPU usage, with
the exceptions of the short bursts to post-attack reports and retrieve them from the BC. The base-
line CPU usage of around 15% has to be attributed to the Python programming language, which is
an interpreted language, creating a small overhead when running programs written in that language.
Apart from this, the BloSS requires to periodically analyze traffic information and request attack re-
ports from the BC, which both contribute to the baseline CPU usage.

Since 15%of averageCPUusage is not a negligible amount of processing resources consumed, this
value can be further improved by reducing the aforementioned periodic tasks’ frequency. However,
this would result in increased delays to mitigate ongoing attacks. Since the delay is an essential fac-
tor in enabling an efficient incentive scheme, later on, this trade-off does not seem reasonable, and
keeping the frequencies at the current high rate is advisable.

Finally, the test environment considered a SoC (System-On-a-Chip) computer like Raspberry Pi
that has constrained resources in contrast to standard servers. Besides, as BloSS is a software-based
approach, the deployment and operation of BloSS are simplifiedwhile the performance regarding the
latency for the propagation of attack signaling information is sufficient for ASes to react to current
DDoS attacks.

6.3 DashboardUsability

The dashboard implemented in the BloSS prototype was analyzed based on use cases, while display-
ing the flow of information in the dashboard during experimental attacks. The system configuration
is detailed in Subsection 6.3.1, Use Case 1 (UC1) presenting the target’s view of a request for mitiga-
tionor alarm ignore is described inSubsection6.3.1, andUseCase2 (UC2)presenting themitigator’s
view to accept or decline a mitigation request is presented in Subsection 6.3.1.

6.3.1 Configuration

Hosts connected to AS 400 (4 hosts), AS 500 (4 hosts), and AS 600 (three hosts) will start a flood-
based DDoS attack on a single host on AS 600. Controllers of all ASes are configured with a static
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inbound traffic threshold to determine whether there is an ongoing attack. Based on this, alarms on
the AS 400 dashboard will show a warning about the attack, and the operator can decide to request
the cooperative mitigation or the ignore alarm (UC1). If cooperative mitigation is requested, the
dashboard on AS 600 will display the mitigation request (UC2).

UC1 - Request Mitigation or Ignore Alarm

Theprecondition for UC1 is that all the BLoSS services are active and operating correctly (cf., Figure
6.2). In this regard, the left-hand side of the dashboard shows the interface (BloSS AS 400) that
presents services’ status, which canhave its services activatedor deactivatedmodules basedon a click.
As soon as inbound traffic breaches the pre-defined threshold (i.e., aDDoS attack is detected), alarms
are sent to thedashboard, and theoperator has todecideonwhether to request or ignore these alarms.
Then, thedashboarddisplays amessage NEW_ALARM, which is seen in theRequests column inFigure
6.2, and the security analyst can decide on whether to request for collaborative defense or ignore the
alarm.

Figure 6.2: bloss-dashboard UI Running on AS 400. ALARMS_TAB

In the following, the security analyst should decide whether to request the cooperative mitigation
or ignore the alarm. If mitigation is required, a request is sent to BloSS, which submits a transac-
tion to the BC, and the request is moved to the column “In Progress” on the dashboard with status
REQUEST_MITIGATION_REQUESTED. Then, the target operators on AS 500 and AS 600 can either
decline the request for mitigation and the status of the attack_report changes to REQ_MITIGA-
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TION_DECLINED or accept the request for mitigation and the status of the attack_report changes to
REQ_MITIGATION_ACCEPTED.
As soon as the involved mitigator involved starts blocking, i.e., applying a mitigation action such

as blackholing traffic or blocking hosts listed as attackers, the attack_report is also REQ_MITI-
GATION_IN_PROGRESS. After the expiration of the maximum block duration, the attack_report is
completed, and thus, ends in the status REQ_MITIGATION_SUCCESSFUL.The history of requests,
besides registered in the BC (not disclosing the details, e.g., blacklisted addresses), is available to all
members of the alliance. The events involving each domain are also registered and grouped in the
“Log” column and can have their details visualized on demand.

UC2 - Accept or Decline Mitigation Request

This use case, in contrast to UC1, considers the mitigator’s perspective available in the “Requests”
tab (cf. Figure 6.3). Mitigation requests are periodically retrieved from the BC, which are relayed
to bloss-dashboard to display to the operator with the status NEW_MITIGATION_REQUEST.
Incoming requests can be grouped depending on the number of requests, and the operator can click
on specific events for more details.

Figure 6.3: bloss-dashboard UI Running on AS 600. REQUESTS_TAB

At this point, an operator can decide to deny the request (and the attack_report’s status changes to
MITIGATION_REQ_DECLINED), or to accept the request (and the attack_report’s status changes

to MITIGATION_REQ_ACCEPTED).Once requests are accepted or denied, the dashboard forwards
the request to BloSS, which submits the transaction to the BC. Then, the mitigation service has a
deadline to be completed, which can be visualized in the time stamps registered on the dashboard.
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This service deadline is required for the mitigator to upload a proof of completion of the requested
mitigation task, ensuring a cooperative mitigation service’s effectiveness.

Traffic from attacking hosts is mitigated, the attack_report’s status changes to MITIGATION_-
REQ_IN_PROGRESS. At this point, the mitigator can act rationally and upload a proof or miss the
upload. However, it is not possible to verify the truthfulness of the quality of the (proof of) service
performed byM (an issue discussed in [143]). Even if the BC can preserve a transparent audit trail
for all transactions, it cannot compensate for lack of ground-truth. This holds for the uploaded proof
of service and user-defined, subjective ratings, in which there is no automated way to determine the
truthfulness of proof or rating fully.

Once the service is completed, and the proof is uploaded (e.g., log showing a mitigation action),
or the mitigation deadline is expired, the service is considered complete, and the status is changed to

MITIGATION_REQ_SUCCESSFUL. Similarly to UC1, all mitigation service events involving each
domain are registered and grouped in the “Log” column, and its details can be visualized on demand.
The transparency of actions recorded in the BC and their details locally on the requester and the
mitigation on logs is useful in cases where a mitigation service does not have its effectiveness proven
by the uploaded proof.

6.3.2 Discussion of Use Cases Usability

The interactive dashboard facilitates the visualization and management of a collaborative defense by
a network operator, and enables the management of these events. The bloss-dashboard includes fea-
tures to visualize the status of mitigation requests from the perspective of the mitigator as well as the
requester.

Tasks involving the detection andmitigation of aDDoS attack are not trivial, hence, the analysis in
a collaborative environment grows in complexity. The challenge of this dashboard here, however, is
to reduce the complexity of information provided to a network operator to support decision-making
without adding overhead of unnecessary information. In the presented use case, a new alarm is dis-
played to and evaluated by the human operator. An alarm can either be classified as a valid threat
and whether mitigation should be requested, or the alarm can be ignored. The complexity of the
this bloss-dashboard isminimal and based on the known layout from software development (e.g., the
Kanban board [173]), leading to a low entry barrier of understanding the user interface. Also, the
bloss-dashboard remains predictable as the main layout does not change and empty states (e.g., no
new MREQ) indicate where new elements have to appear in the layout.

134



6.4 Off-chain Signaling Latency

Attack information posted to the BC is not directly stored on the BCdue to limited block sizes. Thus,
IPFS (InterPlanetary File System) [17] is used as a decentralized and scalable storage solution to
hold attack information. Each AS running the BloSS also maintains an IPFS node to enable the de-
centralized storage. Whenever a new set of attack information is posted to the BC, the data is first
stored in IPFS, and only the hash as a unique identifier of the storage location within IPFS is stored
in a block on the Ethereum BC. Whenever a new set of attack information is posted to the BC, the
data is first stored in IPFS, and only the hash as a unique identifier of the storage locationwithin IPFS
is stored in a block on the Ethereum BC.

Two important aspects concerning this thesis challenges are relevant at the evaluation of the off-
chain signaling: (1) confidentiality and integrity of information, and (2) performance. While is es-
sential to (1) maintain the secrecy and integrity of data shared between a T and M, it is also im-
portant (2) to have such data being exchanged in a timely manner. Local and global experiments
were conducted to evaluate the signaling delay of BloSS. Node configuration for both experiments
are described in Section 6.4.1. First, local experiments were performed at the University of Zürich
(UZH) network to tune BloSS configurations and estimate its performance in a controlled environ-
ment. These experiments are described in Section 6.4.2. Second, global experimentswere performed
to assess the performance of BloSS in a geographically distributed and heterogeneous environment.
Section 6.4.3 describes these experiments.

6.4.1 Configuration

Instances used to perform the BloSS measurements are described in Table 6.3. Local instances were
configuredwith different Virtual CPU (vCPU) andRAMcapacities ranging from 1 to 12 vCPUs and
1 GB to 32 GB of RAM. Instances marked with an asterisk processed parallel workload from other
services, such as Graphical User Interfaces (GUI).

Table 6.3: Configuration of Instances Used During the Experiments

Provider Local Local Contabo Amazon EC2 Amazon EC2 Microsoft Azure Microsoft Azure DigitalOcean DigitalOcean
Type UZH IfI* UZH Irchel* VPS M* t2.micro t2.small B1S B1MS small medium
vCPU 4 12 2 1 1 1 1 1 2
RAM 4 GB 32 GB 6 GB 1 GB 2 GB 1 GB 2 GB 1 GB 2 GB
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Table 6.4: Round Trip Time (RTT) Between Deployed Instances [ms]

From
To Australia Brazil Germany USA Switzerland

Australia - 344 315 248 351
Brazil (AWS) 337 - 229 130 220
Brazil (Azure) 366 6 224 116 204

Germany 333 227 - 103 21
Asia 197 326 279 227 260
Japan 153 266 334 171 170
USA 247 128 104 - 96

Switzerland 347 221 20 94 -

Local instances (UZHIf I andUZHIrchel)were configuredwithmore processing power (vCPUs)
and RAM than other nodes due to the availability of resources in the UZH infrastructure. However,
nodes used in the global experiment, such as AWS, Azure, and DigitalOcean, were configured with
similar specifications (1 GB of RAM for Amazon t2.micro, Microsoft Azure B1S, and DigitalOcean
small instances). However, as observed during the experiments, due to low RAM in experimental
runs instances were adjusted to 2 GB of RAM. Furthermore, while AWS and Azure were configured
with 1 vCPU, DigitalOcean was configured with 2 vCPUs and thus, being able to handle more pro-
cesses simultaneously. It is important to note that a vCPU is not comparable to a hardware processor
and describes the claim of using a physical core for a specific time. Thus, a so-called CPU-credit is
used for regulating the CPU usage in these instances. Also, it is important to note that real traffic was
not generated in the experiments. Thus, different files with random IPv4 addresses were produced,
and requests were submitted to the BC simulating the signaling of an attack. Figure 6.6 presents the
distribution of the time required for this process during the experiments.

6.4.2 Local Experiments

Local experimentsmeasured the performanceofBloSS to exchangeblack-listed addresseswith differ-
ent file sizes. Six instanceswere deployed inside theUZHnetwork: two at the Institute of Informatics
(If I) and the remainder at the UZH Irchel campus. The distance between these instances is 3 km,
and the available bandwidth was 200 Mbit/s.

Located at the Institute of Informatics are two local machines attached to the network over Wire-
less LAN. At the server room four instances were running. They are virtualized using LXD (Linux
Containers) and connected to each other over GBit Ethernet. Figure 6.4 depicts the elapsed time for

136



a transaction inside theUZH in four experiments. For each test, 100measurements (blue dots) were
performed, and the file size varied from 10 kB to 10 MB. The red line represents the median value of
the corresponding experiment set. Also, results do not account for the constant 15 seconds necessary
to create a block in the Ethereum Rinkeby BC.

Figure 6.4: Elapsed Time for a Transaction Within the UZH Network With Different File Sizes.
Bottom to Top: 10 MB, 1 MB, 100 kB, 10 kB.

Theaverage to perform the signaling of a ten kB file was around 100ms (first chart on top), and for
a 100 kB file is 120 ms (second chart on top). For a 1 MB file, the delay was approximately 320 ms.
Thus, a baseline time of 75 ms (processing of addresses) and an additional 25 ms per 100 kB could
be observed to complete the signaling of an attack.

Also, it is important to note that themaximumblock-size defined in IPFS is 1MB.Thus, in the case
of large-scale attacks where a potential list of blacklisted addresses is above 1 MB a file is segmented
into different blocks, which increases the signaling time. During local experiments, a file with 10
MBwas created to evaluate the impact of such segmentation. Using a traditional file transfer method
(wget), it was observed an average delay of 3,200 ms (10 times 320 ms) to complete. For instance,
an address list of 10 MB needs to be divided into ten blocks of 1MB, using traditional methods (e.g.,
HTTP), would take 3200 ms (10 times 320 ms) to complete.

However, IPFS took approximately 900 ms due to the decentralization throughout multiple in-
stances using IPFS. An additional experiment included ten files of 1MB size simultaneously to IPFS,
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submitting thehash (generatedwhen theblacklist is added to IPFS) value to the sameSmartContract
(SC), and retrieving this file on the mitigator instance. The measured time was 950 ms on average,
which is slightly above the transmission time of a regular 10 MB file (900 ms).

Finally, to upload a hash value to the SC and broadcast the transaction to the EthereumBCwas, in
general, required between 40 ms and 100 ms. During local experiments, IPFS required between 70
and 140 ms to publish the file, which includes the processes of copying addresses file locally to the
IPFS directory, calculating the hash value of the file, splitting it into blocks, and updating the hash
table. On the sending side, between 40 ms and 100 ms are required to upload the IPFS hash value
to the SC and broadcast the transaction to the Ethereum BC. In local experiments, IPFS required
between 70 and 140 ms to publish the file, which includes the processes of copying addresses file
locally to the IPFS directory, calculating the hash value of the file, splitting into blocks and updating
the hash table.

6.4.3 Global Experiments

ToevaluateBloSS in a geographically distributed environment, 8 instances in different countrieswere
deployed to measure the data transfer time among themselves. Table 6.5 details the specification of
such instances.

Table 6.5: Specifications of Instances Used for the Geographically Distributed Evaluation

Location Australia (AU) Brazil (BR1) Brazil (BR2) Germany (DE) Singapore (SG) Japan (JP) USA (US) Switzerland (CH)
Type AWS t2.small Azure B1MS AWS t2.small Contabo VPS M Azure B1MS Azure B1MS DigitalOcean Medium Local

Bandwidth 350 Mbit/s 225 Mbit/s 180 Mbit/s 90 Mbit/s 400 Mbit/s 180 Mbit/s 170 Mbit/s 310 Mbit/s

Two instances were located in Europe, Switzerland, and Germany. In Asia, two other instances
were deployed in Singapore and Japan. Three separate instances were situated in America, one in the
USA, close to New York, and two instances were located in Brasil near São Paulo. At the time of the
experiment, these main cloud providers do not provide instances in Africa. Finally, instances were
hosted by different cloud providers (AWS, Azure, DigitalOcean, and Contabo) and configured with
similar compute and network capacities (cf., Figure 6.5).

Bandwidth was measured using the package speedtest-cli from the Ubuntu repository and
measurementsperformedbasedon the instancewith the lowest latency fromthe list of speedtest.net.
Values represent the approximated minimum values upload and download times in a batch of 10
measurements. The lowest bandwidth measured is from Contabo with 90 Mbit/s, which restricts
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Figure 6.5: VM Instances Used in the Experiment Configured as in Table 6.5

available bandwidth to a maximum of 100 Mbit/s. All other instances were configured with at least
a bandwidth of 170 Mbit/s. Differences in available bandwidth were not significant for lists of ad-
dresses of under 200 kB in the experiments.

The Round Trip Time (RTT) provides an estimated lower bound for the time needed to transfer
a file between two instances. The measurements presented in Table 6.4 represents an average value
of 100 requests at the interval of 10 seconds. It is worth mentioning that Microsoft Azure does not
allow incoming ICMP traffic. Therefore, ping requests could not be answered by instances deployed
in this cloud provider. The measurements shows approximately symmetric results, i.e., the RTT time
from Brazil to Switzerland is approximately the same as from Switzerland to Brazil.

Signaling Latency

The latency between a request of mitigation service (signaling) and the mitigation is an important
metric in a cooperative defense system. Experiments consisted in executing the sequence of steps in
Figure 5.2 to evaluate the delay from the beginning of an attack until the attack has beenmitigated as
well as the CPU usage of each BloSS instance throughout the entire mitigation.

More than 95% of the measured values are between the 15 to 35 seconds range. The lowest sig-
naling time measured was 14.1 seconds, while the highest was 3 minutes. Considering the measured
values and that a block is created at every 15 seconds in the EthereumRinkeby BC,most transactions
were mined in the first or second block after a transaction was submitted. Observing long-lasting
transactions, it was noticed that failures on receiving instances caused the transactions to be delayed
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Figure 6.6: Probability Distribution of Overall Elapsed Time (Upper Part), and Range Between
15 and 40 Seconds Zoomed (Bottom Part) [197]

mostly due chain reorganization. A measurement of more than 300 seconds is not possible because
the value stored in the contract would be overwritten by the subsequent transaction of instances still
reporting addresses. Other errors were encountered due to the restart of the operating system and
the instance after adding the instance in Brazil on the Azure Cloud.

Figures 6.7 and 6.8 depicts the results of the measurements of the time required for successfully
transferring a file from a sender to receivers. Every file in the experiment contains 10,000 randomly
generated blacklisted IPv4-addresses, resulting in a file size of 173 kB. Files were published by BloSS-
enabled instances, with an attacked network assigned and other BloSS instances retrieving the file to
support the mitigation of the attack.

BloSS instances into aSCdeployed in theEthereumRinkebyBCandall other instances listening to
the contract can retrieve the signaled file. This represents a BloSS-enabled instance, with an attacked
network assigned to as the publisher of the file and the other instances of BloSS retrieving the file to
support themitigation of the attack. In general, proportions between transfer times are distributed as
shown in RTT measurements Table 6.4. Transmission times of near-located instances is, in general,
lower than between farther distanced instances, but not symmetric in all cases.
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(a) (b)

(c) (d)

Figure 6.7: (a) Australia, (b) Brazil AWS, (c) Brazil Azure, and (d) Germany
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(a) (b)

(c) (d)

Figure 6.8: (a) Switzerland, (b) USA, (c) Singapore, and (d) Japan
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Differences in observed transfer times mostly relates to the geographical proximity of instances
and the availability of content hosted in the IPFS nodes. For example, during the experiments some
instances closely located (e.g., , Switzerland-Germany, Brazil-Brazil) resulted - as expected - in low
signaling delays in contrast to others. Furthermore, some instances could benefit from a direct link
connection between the same cloud provider (e.g., , Azure instances Brazil-Japan).

A significant variation in data transference times (delay between instances) was observed. The
maximum delay observed was 2.6 seconds while the average values by instance regardless varied be-
tween 0.9 and 1.2 seconds. The fastest transmission between instances was in Brazil where, due to
their proximity, the transference time was below 200 ms. In general, to retrieve signaled addresses
represents the overall time an instance uses to receive a block from the BC, retrieve the file from the
DHT (Distributed Hash Table) and its own operations to decrypt the file.

Large Dataset

In large attack occasions, such as the DDoS attack on the French provider OVH in 2016 where over
150’000 IoT devices were involved [174], larger files have to be handled. Figure 6.9 (a) shows the
measuredvaluesof four instances in comparisonof 150’000 to10’000 IPaddresses as in thepreviously
mentioned tests.

Figure 6.9 (a) presents mean values for the larger file, these values are between four and ten times
higher for transmitting data 15 times larger. On one hand, files of over 1 MB size delivers the advan-
tages of the decentralized approach of IPFS by splitting these files into multiple hosts. For example,
for a blacklist published in Australia, the instance in Switzerland can retrieve the first block from the
USA, which already has loaded the block, some blocks from Australia, and other blocks from Ger-
many. This behavior allows to minimize the usage of distant instances and interacts with close-by
instances more often.

On the other hand, the spread of measurements is higher. In the best case, blocks are available
from a close-by instance and the transfer time will be relatively low. All instances can try to receive
the data at the same time from one instance which gets congested at this moment and can serve only
two requests simultaneously. In this case, some instances have towait until the resources of the sender
are available. As a result, the used time increases strongly.

HTTP Comparison

To compare the results of IPFS as the data channel to exchange blacklisted addresses measurements
using the data transmission over HTTP were performed. Figure 6.9 (b) depicts the time taken to
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Figure 6.9: Large Dataset; HTTP Comparison.

load the data using HTTP and IPFS. Measurements were performed using the instance in Germany
as file provider, in which instances requested the target file 120 times. In general, the transmission
overHTTPwas slower than over IPFS.Thedifference between the time taken overHTTPand IPFS is
increased by the distance between the two instances. Thedifference in the spread of the two instances
in Brazil is noticeable probably caused by the different overseas cable of the providers.

6.4.4 Discussion of Off-chain Performance

While local experimentation helped to create the basis of the system and reveal first aspects of config-
uration, the global evaluation exposed the system to real-world problems. During the experiments, it
can be seen that the off-chain tasks involving file management, have a more significant influence on
transfer latency than the steps in the BC. This influence varies according to the file size and distance
between IPFS gateways, being able to observe a transfer time increased to 20 seconds in the global
experiments with large datasets (150’000 IPv4 addresses) in contrast to the payload of 10,000 IPv4
addresses.

Also, during the local experiments, it was possible to transfer files up to 4 GB size and ten files
simultaneously without failures. However, in the global test with instances running on cloud servers
fromvarious providers some issueswere found. Firstly, it is necessary to observe thatBloSSuses IPFS
and the Ethereum BC for signaling attacks. Thus, it is required an available communication channel
to send/answer requests during an attack. Secondly, the use of relatively new technologies such as
IPFS and BC may result in failures during its operation. For example, IPFS experienced problems

144



of excessive memory consumption in instances running on Amazon EC2 t2.small, Microsoft Azure
B1S andDigitalOcean small instances with 1 GB ofRAM, as shown in Table 6.3, which needed to be
upgraded to Amazon EC2 t2.medium, Microsoft Azure B1MS and DigitalOcean medium instances
providing 2 GB of RAM.

The distribution of the used memory (besides the portion allocated to the operating system) is
spread in the following proportion: two parts for the IPFS daemon and one part for the Ethereum
client with a deviation of up to 15% of this ratio. During block indexing periods, the Ethereum client
allocated more memory for this process.

6.5 Reputation Scores

A reputation scheme allows contributors and consumers of the network to rate entities that request
protection in a cooperative defense. These systems have already been proven useful for e-commerce
websites, incentivizing peers to contributewith relevant information and establishing fairness among
peers. BC technology not only offers new possibilities in attack signaling but also emerges as a trust-
worthy and distributed solution for reputation management. Since reputation is earned in interac-
tions between peers, it can be attached to transactions preventing arbitrarily manipulations or gam-
ming attempts. This Section presents the evaluation of different customer profiles (T or M) in the
cooperative signaling protocol.

6.5.1 Configuration

The simulation experiments comprised two identically equippedDell XPSmachines, with Intel Core
i7 (4 Cores, 3.40 GHz) CPUs and 8GiB of RAM each. One machine hosted an Ethereum bootn-
ode and one mining peer. The second machine hosted the second, non-mining geth instance and
the Node.js simulator script. In addition, an Ethereum network statistics dashboard (eth-netstats)
has been deployed for monitoring purposes on this second machine. The simulator uses the Web3
Ethereum JavaScript API and runs in two different modes, the test mode used to verify the correct
behavior of the simulated customer strategies and the acceptance mode simulates an environment
close to reality.

1. TestMode: Allow customers to complete a mitigation contract with each other only once.

2. AcceptanceMode: Simulates continuous DDoS attacks and the creation of mitigation tasks
and allows the simulated customers to make decisions based on past reputation values.
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6.5.2 Customer Strategies

Tables 6.6 and 6.7 present the numerical analysis of possible strategies, which match their analytical
specification in Figure 4.2. These two tables show the state of the simulated world after all customers
complete a mitigation contract with each other once. The simulation function takes as an input one
mitigator strategy and one target strategy. After the simulation halts, the output analyzed in this eval-
uation here is the end state of the mitigation tasks in the simulated world (Table 6.6) and the reputa-
tion of the customers (Table 6.7). In this way, all 16 possible combinations of customers (4 targets
× 4 mitigators) have been evaluated, to ensure the correct behavior of these customer strategies.

Table 6.6: Task Configurations and End States

Input: Customer Strategy
Target Mitigator Output: End State Task ID

Uncooperative

Uncooperative

Completed

0
Lazy 1
Selfish 2
Rational 3

Selfish

Uncooperative 4
Lazy Started (funds sent) 5
Selfish Proof uploaded 6
Rational

Completed

7

Satisfied

Uncooperative 8
Lazy 9
Selfish 10
Rational 11

Dissatisfied

Uncooperative 12
Lazy 13
Selfish 14
Rational Rejected 15

Table 6.6 lists all possible combinations of mitigator-target strategies and the mitigation contract
ID. Completed tasks are either aborted before payment or paid out successfully. Because selfish and
lazy customers never rate, tasks 5 and 6 cannot be completed by either party. Compared to the lazy
customer, the selfish one does upload a proof but never rates, being the reason why the end states
for task 5 and 6 are different. Task 15 is the typical escalation case, where a dissatisfied target and a
rationalmitigator would argue about the truthfulness of the proof of service. In this case, no payment
is made, and end state is “rejected”.

Varying time-windows were chosen for the deadlines, such that they might lead to situations,
where customers miss to meet a deadline. For example, the code that simulates a mitigator upload-
ing a proof with the minimum service deadline of three blocks might not be executed fast enough,
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Table 6.7: Reputation Values and Total Number of Interactions

Input: Output: Ratings Output:
Customer Strategy Positive Neutral Negative Interactions
Satisfied T 1 3 0 4
SelfishM 1 2 1 4
RationalM 1 2 1 4
Uncooperative T 0 4 0 4
UncooperativeM 0 4 0 4
Selfish T 0 3 1 4
Dissatisfied T 0 3 1 4
LazyM 0 2 2 4

Total: 3 23 6 32

because the block time of the BC increases faster due to other transactions being processed. The
service, validation and final rating/escalation deadlines are sampled randomly for each task. Service
deadlines are chosen in a range of [3, 13] blocks and validation deadlines in range of [17, 27] blocks.
Final rating deadlines are sampled in the range of [32, 42] blocks. Before the new mitigation contract
is created, all peers are fundedwith 10Ethers each. The contract pricewas fixed to oneEther for every
mitigation task.

Overall, Beta reputation scores for attack targets (Ts) allow identifying a satisfied T, because in
comparison with the undesired T strategies it develops the highest average reputation value (cf. Fig-
ure 6.11). From Figure 6.11 it also becomes evident, that dissatisfied and selfish Ts are downgraded
continuously and will eventually no longer receive help from mitigators (Ms), due to their lousy rat-
ing. It is not desirable in all circumstances that satisfied Ts crowd out dissatisfied Ts, since this will
incentivize Ts to accept also poorly (or even severely) delivered mitigation services. Because of the
current design, no third party checks that a rating indeedmatches the quality of the delivered service,
this problem remains yet unsolved.

After the first few mitigation contracts, M reputation values in Figure 6.11 also allow to clearly
distinguish a constant rational M from the lazy M. However, unlike for the Ts, it is difficult to dis-
tinguish the rational M from the selfish and uncooperative M. The uncooperative M usually shows
low positive and negative reputation, because it aborts mitigation tasks early, never takes any action,
thus receives little feedback and its reputation stagnates at 50%, not performing particularly good or
bad. Hence, chances of picking an uncooperativeM for a transaction is diminished the most by con-
sidering raw reputation values, especially the amount of positive and negative ratings. Because both,
the selfish and rational M, upload proofs, the only difference between the two strategies is that the
selfishM never rates. SelfishM behavior is an irrational strategy, since the selfishM (deliberately or
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Figure 6.10: Average Beta Reputation for Attack Targets [81, 82]

Figure 6.11: Average Beta Reputation for Mitigators [81, 82]

not) deprives itself of payment. Assuming thatM rarely forgets to rate services at the end (which is
the definition of selfish behavior), one can also assume that there exists more rational than selfish
Ms. This leads to the conclusion that chances of picking a rational M compared to a selfish M with
the same Beta reputation score are higher, due to the incentive.

6.5.3 Robustness of the Reputation System

By analyzing the design of the cooperative protocol it is possible tomake an analysis of different types
of possible fraud. An evaluation with customers M and T with different profiles (e.g., honest, mali-
cious, lazy, and others) is performed in the authors’ previous work [81]. Table 6.8 summarizes the
analysis, which is followed by a discussion on each type of fraud.
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Table 6.8: Assessment of Reputation Frauds

Target Fraud Short Description Achieved

System Free-riding Incentives are required to
request mitigation services  

False-reporting

M is not incentivized to provide
false-reports on T but the protocol
allows such behavior, which can
be tracked on future interactions

G#

Rating

Sybil and
Collusion

Whitewashing (re-entry) of
identities is not prevent in a
permissionless deployment

G#
Ballot Stuffing MaliciousM’s and T’s can collude

to elevate their reputation 7

Bad-mouthing

Unfair ratings are not incentivized
by design once a service is paid
upfront by T andM only rates,
when the service is completed

 

 = property ;G# = property partially provided; 7 = property not provided

• Free-riding: this type of activity is prevented by design in BloSS by requiring T’s to deposit
the incentive required byM’s into the SC. Since the SC is designed as a state machine, it is not
possible to circumvent this step making the mitigation service start before funds are locked
into the SC.

• False-reporting: fraud can happen when a maliciousM assigns a false rate to an honest T at
the end of the interaction. Although the protocol allows for this, no rational incentive exists,
since actions are recorded on the BC.Thus, future interactions of amaliciousM can be tracked
by all T’s.

• Sybil- andCollusion Attacks: BloSS excludes the possibility where a customer can boost its
reputation by creating mitigation SCs with itself. A possible deployment on a public ledger
would enable actors, i.e., aM or T, to maintain multiple account pseudonyms on the BC and
transacting between them to inflate reputation (Sybil attack).

• Ballot Stuffing: BloSS is not immune against ballot stuffing. Besides transactions recorded
on the BC, customers can agree on discounts and benefits over alternative communication
channels. For instance, two malicious T andM would be able rate each other positively inde-
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pendently from the mitigation outcome in rounds where both can perform the role of T and
M.

• Bad-mouthing: ABC-based reputation systemdesign impedes bad-mouthing inwhich aTor
M can only provide feedback for transactions completed. This elevates costs of bad-mouthing
a competitor, since a transactionhas tobe committed for each fraudulent reputation statement.

6.5.4 Discussion of Reputation Scores and System Robustness

Overall, Beta reputation scores for attack targets (Ts) allow identifying a satisfiedT, because in com-
parison with the undesired T strategies it develops the highest average reputation value. It also be-
comes evident, that dissatisfied and selfish Ts are downgraded continuously and will eventually no
longer receive help from mitigators (Ms), due to their lousy rating. Hence, it is not desirable in all
circumstances that satisfied Ts crowd out dissatisfied Ts, since this will incentivize Ts to accept also
poorly (or even severely) delivered mitigation services. Because of the current design, no third party
checks that a rating indeed matches the quality of the delivered service, this problem remains yet
unsolved.

After the first few mitigation contracts, M reputation values in Figure 6.11 also allow to clearly
distinguish a constant rationalM fromthe lazyM. Asdepicted in theFigure6.11, the rationalMwould
always upload a proof as soon as themitigation service is completewhereas a lazyMwould eventually
miss a deadline depending on the randomwaiting time configured in the experiment to simulate their
lazy behavior. However, unlike for the Ts, it is difficult to distinguish the rationalM from the selfish
and uncooperativeM. The uncooperativeM usually shows very low positive and negative reputation,
because it aborts mitigation tasks early, never takes any action, thus receives little feedback and its
reputation stagnates at 50%, not performing particularly good or bad. Hence, chances of picking
an uncooperative M for a transaction is diminished the most by considering raw reputation values,
especially the amount of positive and negative ratings.

Because both, the selfish and rationalM, upload proofs, the only difference between the two strate-
gies is that the selfish M never rates. Selfish M behavior is an irrational strategy, since the selfish M
(deliberately or not) deprives itself of payment. Assuming thatM rarely forgets to rate services at the
end (which is the definition of selfish behavior), one can also assume that there exists more rational
than selfishMs. This leads to the conclusion that chances of picking a rationalM compared to a selfish
Mwith the same Beta reputation score are higher, due to the incentive.

Lastly, the reputation system prevents Sybil and collusion attacks by mapping customer accounts
to real-world identities, preventing customers from creating several identities to manipulate reputa-
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tion scores. However, ballot stuffing and bad-mouthing are not prevented, but discouraged due to
the cost to deploy amitigation contract only tomanipulate reputation scores. Hence, a customer can
boost its reputation by creatingmitigation contracts with itself. As long as the system is not deployed
on a public ledger, customers can be prevented from maintaining multiple account pseudonyms on
the BC and transacting between them to inflate reputation (Sybil attack).

6.6 Cooperative Signaling Protocol Latency

The goal of an experimental evaluation is to measure quantifiable parameters, such as the gas usage
and the performance. Based on those outcomes and within a global evaluation, it is possible to label
BloSS a feasible approach. However, to achieve a global BloSS deployment, a simulation based on
Truffle and Ganache Suite and a local deployment on a test net was performed. Since Truffle and
Ganache are simulation environments, they allow for a verification of the correctness of SCs running
on Ethereum. Since previous results from local deployments on hardware were published in [198],
this evaluation discloses the global evaluation results.

6.6.1 Configuration

BloSS’ evaluationwas based onAmazonWebService (AWS) instances deployed inOhio, Tokyo, and
São Paulo. These EC2 Amazon t2 medium instances were configured with two threads on either an
Intel Xeon or anAMDEPYC-Core running at up to 3.0GHz andwith 4GByte ofRAM.All instances
were synchronized with the Ethereum Rinkeby BC in order to enable separation of the TargetT and
MitigatorM. Each location was tested separately between the target in Zürich and São Paulo and the
mitigator set toOhio andTokyo, respectively. Table 6.9 listsRoundTripTime (RTT)results executed
onAWS instances in Zürich, São Paulo, Tokyo andOhio. RTTtimes can be used to evaluate, whether
a potential statistical significance across RTT may be found during execution of BloSS.

Table 6.9: Average RTT Between Nodes [ms]

From
To Tokyo São Paulo Ohio Zürich

Tokyo - 270 159 223
São Paulo 270 - 130 130

Ohio 159 130 - 119
Zürich 276 223 119 -

151



A synchronized BloSS node utilizesGeth to interact with a SCdeployed. Instead of relying on one
full node offered by Infura with two accounts, the BloSS tests with the Geth client are executed on
two synchronized nodes in Zürich and Ohio to measure the gas usage and the performance.

6.6.2 Simulation Experiments

The first step in the prototyping of the Cooperative Signaling Protocol is to experiment it in a simu-
lated environment. A simulation based on Ganache [235] allows for rapid experimentation in terms
of correctness, performance, and integration before deploying the contract in a real BC environment.
Especially the gas usage and performance results, independently from the block times, are considered
in the evaluation on Ganache. The reason for disconsidering block times is that, in Ganache, block
times are reduced or even eliminated for rapid prototyping reasons. Thus, waiting times to simulate a
lazy or selfish actors were subtracted to achieve comparable results within the different test cases and
to measure only the processing times in this first step.

Also, registering a mitigator and retrieving the mitigator’s address from the Register follows the
same approach in any of the scenarios. However, when a mitigator is found, a second search for the
same mitigator will not return a different address of the previous and thus, the registration process
as well as the searching for a specific mitigator by a name is executed only once after deploying the
Signaling Protocol.

Table 6.10: Ganache Processing Times [s] for Protocol

Scenario Average Processing Time [s] Standard Deviation [s]
1 0.312 0.027
2 0.277 0.020
3 0.417 0.028
4 0.358 0.028
5 0.398 0.025
6 0.377 0.025
7 0.335 0.020
8 0.366 0.033
9 0.404 0.022
10 0.426 0.037
11 0.405 0.022

Average 0.370 0.026

Theoverall average processing timeof each scenariowith n=20 is approximately 0.37 seconds, and
the average standard deviation is 0.026 seconds, which is achievable by eliminating block times on
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Ganache. These results can not be reproduced by using a testnet (e.g., , Rinkeby) since its block times
are dependent on the PoA algorithm and have an average duration of 15 seconds. Table 6.10 shows
that without including block times, the average processing time for the Signaling Protocol would be
close to 0.37 seconds.

6.6.3 Local Experiments

By executing the performance tests on a public testnet e.g., Rinkeby, real-world block times are in-
cluded. Not only does Infura serve as a proxy to the Rinkeby BC and, therefore, allows testing with
defined accounts through the Infura Rinkeby endpoint ID, it also enables to execute the same test
scenario scripts that were used for the Ganache evaluation. Executing the same scripts leads to com-
parable results and a more reliable testing cycle. By only adding the option to the Truffle command
for using the Rinkeby network, truffle automatically starts deploying the Register and Signaling Pro-
tocol with the predefined accounts specified in the truffle-config.js file.

Running the performance tests locally from the Infura node on the same computer returns the
same gas usages as the described registration gas usages in Table 6.14. This alsomeans that the trans-
action fee, while setting the same gas price on Ganache and Rinkeby, results in the same sum. Exe-
cuting the performance tests, however, showed that for each changing state one block time is to be
awaited for the state to be changed on the BC, allowing the Cooperative Signaling to proceed to a
final endstate.

Table 6.11: Local Rinkeby Processing Times [s] for Protocol

Scenario Average Processing Time [s] Standard Deviation [s]
1 90.270 0.542
2 88.811 0.855
3 88.188 0.889
4 106.304 0.471
5 89.500 0.492
6 102.518 0.657
7 118.151 0.528
8 105.062 0.863
9 87.842 0.722
10 105.418 0.601
11 89.471 0.629

Average 97.412 0.659
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Since the average block time on Rinkeby is defined as 15 seconds and each outcome scenario of
the cooperative signaling protocol includes six to eight blocks, the time to finish each scenario can
be estimated bymultiplying the number of blocks with the average block time. However, by running
the performance tests locally on Rinkeby, the average processing time was shorter than the estimated
times in 7 out of 11 scenarios. On average the overall processing signaling time is 97.412 seconds and
the average standard deviation testing the scenarios on Rinkeby via Infura is 0.659 seconds.

6.6.4 Global Experiments

A synchronized node can utilize Geth in order to interact with a deployed SC. Instead of relying on
one full node that is offered by Infura with two accounts, the tests with the Geth client are executed
on two synchronized nodes in Zürich and Ohio. A control condition is used between the nodes in
Tokyo and São Paulo such that the results from Zürich-Ohio can be compared with either a private
BC, a proxy instead of a full node and finally Tokyo-São Paulo (cf., Figure 6.12 shows AWS instances
deployed worldwide). The focus on these global tests is to measure the gas usage and the perfor-
mance, and whether the Register and Signaling Protocol are able to be used by more than one node.
Moreover, in order to test the behavior on two instances, a different script was implemented for a
pseudo-real target to simulate its information as well as the mitigator’s side which is to be registered.

Figure 6.12: AWS Instances Used in the Experiment. Acronyms: OH - Ohio, TK - Tokyo, SP -
São Paulo, ZH - Zürich

To rectify the problem of non “full” block times, a synchronization process before the actual reg-
istration or signaling process can be completed. By synchronizing themeasured time-frame closer to
the beginning of the starting block, i.e., maximizing x, global results become comparable to results on
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a previously configured local Rinkeby. A second approach to retrieve the correct time measurement
on the global performance tests was to run tests n = 20 times, such that the first run acts as a synchro-
nization step. Thus, depending on the scenario and the deadlines missed, full block times represent
the worst case in terms of BloSS performance.

Table 6.12: BloSS Global Rinkeby Processing Times [s] (Zürich-Ohio)

Scenario Average Time [s] Standard Deviation [s]
1 88.938 3.025
2 88.616 1.099
3 87.973 2.110
4 104.090 0.509
5 88.006 1.361
6 104.358 1.340
7 118.900 0.442
8 103.932 0.458
9 89.265 0.711
10 103.331 1.038
11 88.956 0.509

Average 96.950 1.146

By running the target script on anAWS instance inOhio and aM script on a node located inZürich
(both synchronized to theRinkeby network), the average global Rinkeby processing timewith n=20
is 96.950 s and the average standard deviation is 1.146 s (cf., Table 6.12). Since the control condition
has been tested and evaluated as well, similar results in terms of average processing time and average
standard deviation are expected. However, similar results were reached as shown in Tables 6.12 and
6.13, while the nodes were not synchronized at all times due to timeouts, i.e., missed deadlines. This
is due to the full nodes, which are geographically in close proximity of the AWS instances in Tokyo
and São Paulo, but not being synchronized at all times.

For both global averages, average times measured show a similar result, with a slight difference in
the average processing time of 0.668 s representing the difference of approximately 0.7%. By reaching
these similar results in both global Rinkeby tests and removing the corresponding RTT shown in
Table 6.9 the difference in average processing times for the scenarios is only 0.5171 s. It should be
noted that 20 test runs per case may not lead to exact average values. Also, every test on the global
Rinkeby network was tested with varying (not precise) average block times of 15 s.
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Table 6.13: BloSS Control Condition Processing Times [s] (Tokyo-São Paulo)

Scenario Average Time [s] Standard Deviation [s]
1 89.267 1.543
2 89.579 0.830
3 89.661 0.851
4 104.661 0.966
5 89.427 0.658
6 105.187 1.358
7 120.136 1.204
8 104.924 0.921
9 89.149 0.785
10 103.572 0.718
11 88.235 1.611

Average 97.618 1.040

Figure 6.13 depicts overall average times to complete the execution of BloSS for the three infras-
tructures and eleven scenarios, where each scenario had n = 20 test runs. In total, 660 scenarios were
executed to assess the worst-case time to complete the execution of BloSS. Similar processing times
were observed as in local and simulated deployments, and it could be shown that by using Infura as a
proxy, the behavior of the public test net Rinkeby with a simulated actor inOhio could bemimicked.
This implies that the performance of BloSS is stable and can be accessed in a similar way through the
Truffle framework and the Geth client. Even the controlling condition, where actors are located in
São Paulo and Tokyo, showed similar results, when both nodes were synchronized. Thus, the confi-
dence in the cooperative signaling is enhanced.

6.6.5 Deployment and Operation Costs

Acritical factor to retrieve fromtheexecutionof all scenarios, besides theperformance, is theEthereum
gas cost. As every transaction or change of a contract state costs gas, it is important to evaluate the gas
usage of the scenarios in order to determine whether the costs are feasible or not. Note that in order
to calculate the total cost of a transaction, gas used is multiplied with the price per Gwei. The gas price
per Gwei is adjustable and, therefore, offers slower or faster transaction speed i.e., , a lower or higher
probability to be added to the next block, correlating positively with the gas price.

TransactionFee[$] =
GasUsed× GasCost× ETHPrice

109
(6.1)
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Figure 6.13: Comparison of Global Average Processing Times [s] on Ganache and Local
Rinkeby

Since the gas used does not directly show the transaction fee costs in fiat currency e.g., US dollar,
the formula in 6.1 can be used to determine the transaction fee of the deployment or the interactions
afterwards.

The Gas used in the global Rinkeby tests show slight differences compared to Ganache and local
Rinkeby tests, which were all based on the same truffle test scripts. While the registration gas usage
does not differ in any test, the total BloSS gas used on average differs at 15,366Gwei compared to local
Rinkeby and Ganache. All global Rinkeby gas used results are shown in Table 6.14.

The overall gas used to deploy and utilize the Register SC is the same, whereas BloSS shows slight
differences. On average anM needs to pay gas costs ranging from0.04US$ for the gas price of 1Gwei
to 0.8 US$, when prioritizing transactions with a gas price of 20 Gwei. A T is required to pay more
gas on average, which ranges from 0.06 US$ to 1.13 US$. However, the deployment of BloSS must
be paid for as well and one-time costs for a deployment of BloSS range from 0.82 US$ to 16.40 US$.
Thus, the total costs to deploy both SCs require a payment from1.03US$ to 20.51US$ (cf. Table 6.15
with a conversion rate of 216.00 US$/Ether).
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Table 6.14: BloSS Global Rinkeby Gas Use [Gwei]

Scenario Total Gas TGas Used MGas Used
Deployment 3,795,264 3,795,264 -

1 253,999 192,836 61,163
2 253,999 193,236 61,163
3 314,438 169,225 145,213
4 314,490 169,225 145,265
5 315,050 169,225 145,825
6 314,370 168,928 145,442
7 314,508 168,928 145,580
8 315,154 168,928 146,226
9 291,401 169,139 122,262
10 314,716 169,139 145,577
11 315,362 169,139 146,223

Average 301,626 173,450 128,176

Table 6.15: Total Average Global Rinkeby Costs per BloSS Instance

Deployment Target Mitigator
Register [Gwei] 952,459 88,866 56,343
BloSS [Gwei] 3,795,264 173,450 128,176
Total Gas Used [Gwei] 4,747,723 262,316 184,519
Total Costs max. [US$] 20.51 1.13 0.80
Total Costs min. [US$] 1.03 0.06 0.04
*Conversion [Gwei]/[US$] considering 216 US$ per Ether (August 26, 2019).

6.6.6 Discussion of Signaling Performance

The average processing times showed that under perfect conditions in the Simulated environment
i.e., , close to zero block times and no network latency, the average processing time for the Signaling
Protocol execution takes 0.498 seconds. Local test scenarios using the globalRinkeby setting showed,
however, that on average across all scenarios, 96.943 seconds should be expected for the Signaling
Protocol to process in a realistic scenario. This difference of 96.444 seconds results mostly from the
average block time of 15 seconds which is added to the total processing time, in every change of state.
In addition to the main factor of the average block time, the latency between Zürich and Ohio also
adds 0.1192 seconds to the total processing time of the Signaling Protocol.

Averaging every scenario over the tested results shows, by usingGanachewith block times set to 15
seconds as well as the test results from Rinkeby in Section 6.6.3 and 6.6.4, that the results are indeed
similar to each other. While the processing tests on the private local BCGanachewere deviating 0.37

158



seconds on average, local Rinkeby showed 0.81 seconds and global Rinkeby 1.172 seconds for the
same task. In addition to the standard deviation, the block time of Rinkeby is averaging 15 seconds,
which also leads to processing times in the local and global tests to be slightly shifted towards shorter
periods of time. Every test in the Evaluation used for the comparison represents worst case scenar-
ios for the cooperative signaling process, since only full block times are considered. Furthermore,
execution times and costs of BloSS as presented are based on the worst-case scenario, i.e., a public
BC infrastructure. For example, Target and Mitigators were configured to react to requests close to
the deadlines configured in the contract. Therefore, it has to be noted that a PoA-based deployment
of BloSS will reach a much lower, almost neglectable cost basis and an even further reduced block
creation time. This was shown for the case of simulated and local Rinkeby deployments.

6.7 Smart Contract’s Vulnerabilities

Theanalysis of vulnerabilities had as goal to conduct an assessment of BloSS contracts (cf., Appendix
B) by applying five tools for automated security audit, and a manual inspection of BloSS contracts.
Subsection 6.7.1 describe the conditions and tools used for the automated analysis. Subsection 6.7.2
presents the outputs of the analysis and a comparison between the tools. Lastly, Subsection 6.7.3
discuss the findings on vulnerabilities.

6.7.1 Configuration

Five automated tools were used for an automated security audit of BloSS SCs (cf., description in
Chapter 2, Section 2.7): Mythril, Securify, Securify, Remix, and Manticore. It is important to note
that not all listed tools were used in the evaluation due to their own outdated dependencies (in the
case of Oyente and MAIAN), implying that contracts could not be compiled in their environment.
For example, the latest Solidity version supported by Oyente was 0.4.19, while most contracts in
BloSS require 0.5.8. Oyente’s Web GUI had even older dependencies, where the last supported So-
lidity version is 0.4.17. In addition, this analysis was complemented with a manual code check based
on the list of vulnerabilities for SCs listed in Appendix E.

6.7.2 Analysis of BloSS Smart Contracts

BloSS was analyzed in terms of general BC vulnerabilities. Due to irreversible nature of blockchain’s
transactions, deployed SCs and transactions become immutable after deployment. This property
brings both advantages and disadvantages. On one side, attackers cannotmodify contracts of tamper
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with transactions (e.g., revoke the payment for amitigation action). On the other side, SC developers
are not able to change contracts if they are already deployed. Thus, to fix a bug or improve a contract,
developers have to terminate it and create a new one. Thus, testing and security audit play a crucial
role in the development of smart contracts [190].

Another importantBCproperty is sequential execution. Theorder of SCs execution is determined
by a consensusmechanismand is the same for all users. As a result, only a limitednumber of contracts
can be executed per second. This would lead to a performance bottleneck and allowing attackers to
stall the network by using a contract, which would take a lot of time to execute. However, BloSS de-
ployment aims at a permissioned network composed by limited and pre-trustedmembers, thus such
vulnerability would not affect its scalability. Lastly, code complexity and human errors are typical
problems for SCs. The technology is still relatively new, and many developers do not have sufficient
knowledge and experience in this area yet. Table 6.16 demonstrates the number of their findings for
different smart contracts in BloSS.

Table 6.16: Number of Findings per Security Audit Tool

Contract Mythril Securify Securify 2.0 Remix Manticore
Enums - - - - -
Migrations 1 2 8 1 -
Register 2 5 9 5 N/A
Protocol 3 18 N/A 64 N/A
Total 6 25 17 70 -

*”N/A” = Not Available, ”-” no findings

The cooperative signaling protocol (termed Protocol) provides the main functionality of BloSS
(i.e., regulates the interaction between a target and a mitigator), and is, therefore, the most complex
SC. This explains why the tools found the highest number of vulnerabilities and bugs. However, two
tools were not able to perform the analysis of Protocol. Securify 2.0 successfully performed the anal-
ysis of Register contract after Enums contract was added directly to the code. Found vulnerabilities
were categorized in Table 6.17 and discussed in Subsection 6.7.3.

6.7.3 Analysis of Smart Contract Security Tools

It is important to note that our definitionof a vulnerability type does not always completelymatch the
one implemented in the tools (as described in Section 2.7 of Chapter 2, the novelty of the topic and
different BC environments result in distinct view by authors on vulnerabilities and their definitions).
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Table 6.17: Classification of the Security Audit Tools Findings

Vulnerability Mythril Securify Securify 2.0 Remix Manticore
Reentrancy - 2 - - -
Transaction ordering - 2 - - -
Block timestamp
dependency 1 - - 7 -

Exception handling - - 1 34 -
UnrestrictedWrite 2 14 3 - -
Non-validated
arguments 1 4 - -

Greedy contract - 1 - - -
Overspent gas - - - 25 -
External call 3 3 - - -
Erroneous visibility - - 6 - -
Division - 2 - - -
Uninitialized state
variable - - 1 - -

Solidity naming
convention violation - - 1 - -

Complex Solidity
version pragma
statement

- - 1 - -

Variables with similar
names - - - 1 -

Bytes and string
length - - - 1 -

Tool’s internal error
during the audit - - - 2 -

Total 6 25 17 70 0

For example, Mythril identifies two external call vulnerabilities in the line 42 of the Protocol (cf.,
Listing 6.1):

1 reg = Register(RegisterAddress);
2 // cast mitigator address from address to payable address
3 Mitigator = address(uint160(reg.getMitigator(address(this), _name)));

Listing 6.1: Snippet Protocol Contract
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AsperMythril’s findings report, the first vulnerability occurs because theoutput of the external call
is read. The second is caused bywriting this output to a variable. However, according to the definition
of external call (cf., Appendix E), they refer to the same external call and, therefore, identify only one
external call vulnerability in this snippet. Besides, the last seven vulnerabilities in the table do not
match any of vulnerability types defined in Appendix E. Securify allows to check if a contract used
division in any calculations. Its second version examines state variables, the compliancewith Solidity
namingconventionandSolidity compiler’s version statements. Finally, Remix reviews variablenames
and the usage of bytes and string length. Moreover, there are two messages about an internal error
included into the security report for Protocol contract.

After thefindingsof the security audit toolswere classified, amanual analysis andvalidatedfindings
against true and false positives was performed. As a result, it was identified overall 85 false positives.
Almost half of them belong to the exception handling vulnerability type. In particular, 34 findings
by Remix contain a suggestion to consider using assert(x) instead of require(x). However, the main
purpose of using require(x) in BloSS is to check that certain conditions are met during the execution
and not to handle internal errors. Thus, according to Solidity documentation [67], the choice of the
function is correct.

Securify 2.0 identified one exception handling vulnerability, which was considered to be a false
positive. According to the tool’s output, the return value in the line 22 in Migrations needs to be
explicitly checked for an error (cf., Listing 6.2). However, no special error handling is required in this
case because setCompleted() only assigns an argument to a public variable and is not error prone.

1 function upgrade(address new_address) public restricted {
2 Migrations upgraded = Migrations(new_address);
3 upgraded.setCompleted(last_completed_migration);
4 }

Listing 6.2: Snippet Migrations Contract

In the same line, Mythril and Securify identified an external call. However, this is a recursive call
of Migration contract by itself. This contract does not contain any critical functions or data. For
this reason, this finding is not relevant from a security point of view. Another vulnerability with a
large number of false positives is gas overspent (identified only by Remix). In overall 25 cases, Remix
suggests adding a gas requirement limit to functions. As neither of the functions contain gas costly
patterns it is unnecessary to add gas limits to them.

There are also eight cases of unrestricted write identified by Securify which are considered to be
false positives. For example, Securify claims that there are no write restrictions for the line 55 in
Protocol. However, as the listing 6.3 demonstrates, only a target can call this function and, therefore,
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perform thesewrite operations. Besides, it is only possible to do this in three states of the process and
only if a mitigator is selected.

1 //Line 55 of the Protocol Contract
2 owner.transfer(address(this).balance);

Listing 6.3: Transfer of Funds in Protocol Contract

Besides, Securify identified two cases of division inProtocol and suggests being careful about them
because of the integer rounding by divisionwhich can influence the computation result. However, no
division operations were found during the manual review. Thus, these findings are considered false
positives. Securify also claims that the order of transactions can influence who is the receiver of the
funds and the amount of the transferred funds in Listing 6.4 from Protocol:

1 function init(uint _DeadlineInterval ,uint256 _OfferedFunds ,string memory
_ListOfAddresses) public

2 {
3 require(msg.sender==Target ,"[init] sender is not required actor");
4 require(Mitigator!=address(0),"[init] mitigator is not set.");
5 require(CurrentState==Enums.State.REQUEST ||
6 CurrentState==Enums.State.COMPLETE ||
7 CurrentState==Enums.State.ABORT , "[init] State is not appropriate"

);
8 Target = msg.sender;
9 DeadlineInterval = _DeadlineInterval;

10 OfferedFunds = _OfferedFunds;
11 ListOfAddresses = _ListOfAddresses;
12 CurrentState = Enums.State.APPROVE;
13 emit ProcessCreated(msg.sender ,address(this));
14 }

Listing 6.4: Initialization of Protocol Contract

However, due to the implemented system of different states (Request, Approve, Funding, among
others), it is only possible to perform the transfer in states Rate_T or Rate_M: after the rating eval-
uation by a target and, if necessary, by mitigator is completed. Thus, the receiver and the amount of
funds are not affected by the transaction order, but by the participant’s ratings and whether the proof
of work was uploaded on time. However, it is essential to note that the Protocol does not check the
uploaded proof ’s content.

In the same line of the code, Securify identified an external call with a target that attackers can po-
tentiallymanipulate. However, this finding is not a vulnerability because the target of the call (owner)
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is provided by the evaluate() function and can be only the target or themitigator. Moreover, Securify
marked the Register contract as greedy. According to the tool, the funds can be received by the con-
tract but then locked because there is no opportunity to extract them. As Register does not support
any Ether transfer, this finding is considered to be a false positive.

Finally, Remix found a vulnerability that is not in the list of Appendix E. According to Remix and
Solidity documentation [67], when a string is converted to bytes, its length is calculated in bytes and
not in characters as it might be expected, which can lead to misreadings. However, in the Listing
6.5 from Protocol, it is only checked if the proof is empty, which would mean that both lengths in
characters and bytes would equal zero.

1 if(bytes(Proof).length ==0){
2 return endProcess ();
3 }

Listing 6.5: Check for Empty Proof in Protocol Contract

Thus, although it is acknowledged that developers should be careful when converting a string to
bytes, in the current example, it is not considered it as a vulnerability in BloSS. Other vulnerabilities
did not match any vulnerabilities but were considered to be true positives. For example, Remix finds
awarningwhen there are two variables in the Protocolwith similar names (Target and_target). Secu-
rify 2.0 claims that the Solidity pragma version statement in Migrations is too complex (e.g., pragma
solidity >=0.4.21 <0.6.0;). Moreover, Securify 2.0 suggests renaming last_completed_migration vari-
able in Migrations because it does not comply with the Solidity naming convention as all of these
findings are correct and evaluated as true positives.

Table 6.18 contains an overview of results.

Table 6.18: Overview of True Positives and False Positives in the Findings of the Security Au-
dit Tools

Mythril Securify Securify 2.0 Remix Manticore
True Positives 5 10 16 8 0
False Positives 1 15 1 60 0
Total 6 25 17 68 0

It is important to note that two findings of Remix were removed from the overview because they
were related to an internal error message in Remix and, therefore, could not be considered neither
as true positives nor as false positives. As a result, Remix has only 68 instead of 70 findings in Table
6.18. Also, Table 6.18 demonstrates that the number of findings does not necessarily correlate with
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the number of true positives. Even though Remix has by far the highest number of findings, it has
a rather low number of true positives. In contrast, Securify 2.0 with relatively few findings has 16
true positives and only one false positive. It was able to identify the highest number of security audit
findings and has, therefore, the lowest number of false negatives.

Altogether, the novelty of the area in auditing SC vulnerabilities and their tools is demonstrated by
the differences between the security tools. Tools are based on different types of analysis (cf., Chapter
2) and, therefore, use various analysis strategies with different vulnerability types in scope. In the
concrete example of BloSS smart contracts, Securify and Securify 2.0 performed the best. Although
Remix had the largest number of findings, most of them were evaluated as false positives during the
manual security analysis. Mythril demonstrated good results regarding the ration of true and false
positives. However, as it focuses only on finding four types of vulnerabilities, it has a high number of
false negatives.

6.8 KeyObservations

BloSS contributes to themodern securitymanagement forDDoSmitigation approacheswith a coop-
erative defense logic andprototype as a proof-of-concept (available in [198]). It enables a flexible and
efficient DDoSmitigation solution across multiple domains based on a permissioned PoA Ethereum
[253], in which only pre-selected operators participate in the cooperative defense. Therefore, based
on recently validated technical tools, such as BCs and SDNs, it became possible to provide a practi-
cally deployable, collaborative defensemechanism capable of overcoming themain challenges stated
above and in [183, 265].

The experiments and evaluations performed during the thesis had, in principle, the objective of
refining the architecture and services and validating core functionality of BloSS. In this sense, local
experiments are both based on simulators (e.g., Mininet [123] and Ganache [235]) and hardware
prototypes implemented in the BloSS cluster were of fundamental importance to outline the initial
architecture andoperationof the service, offering rapidprototyping andverificationof results. Global
evaluations on virtual machines spread across the world to evaluate performance characteristics and
the simplicity of deployment and operation of the prototype. Therefore, being of fundamental im-
portance for reducing technical complexities and reaching the first objective outlined for this thesis.

Theevaluation conducted in Section 6.2)was fundamental froma correctness point-of-view to val-
idate the design of both the protocol (cf., Chapter 4) implemented in the SCs and the various BloSS
instances connected to the Ethereum network (cf., Chapter 5). From the purely software based de-
sign where BloSS acts as a VNF connected to the SDN controller, the instantiations could be easily
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ported to VMs across the world in the global experiments in Section 6.4 (i.e., off-chain signaling per-
formance) and Section 6.6 (on-chain signaling performance).

Overall, the technical, social, economic, and legal aspects of BloSS have been achieved. BloSS is an
effective solution as a defense strategy in cases of DDoS large-scale attacks, such as the Memcached
attack onGitHub servers surpassing 1.35 TBit/s [117] andDynDNS, which peaked 1.2 TB/s result-
ing in the unavailability of significant Internet services [192]. In such cases, traditional centralized
defenses can be easily overloaded, and cooperation between organizations is useful to reduce attacks.
Hence, BloSS addresses different challenges of a cooperative defense, such as providing incentives
and tracking reputations among members. This not only encourages participation but also punishes
malicious behavior by members.

By designing the BloSS dAppwith SDNandNFV-capabilities, the critical advantage of a quick de-
ployment was engineered into BloSS, inherent to competing systems like CoFence [195] or Bohatei
[69]. However, due to BloSS’ modular architecture, it is neither limited to SDN-based network-
ing infrastructures nor limited to an NFV-based solution. On the contrary, the networking module
of BloSS termed Stalk can be adapted to various infrastructure deployments while still maintaining
connectivity over the RESTful interface to BloSS modules.

Reputation and reward schemes integrated intoBloSSprevent free-riding (attack targets) and false-
reporting (mitigators). These mechanisms incentivize the rational behavior of operators in the long
run. Selfishmembers are identified by looking at their past interactions on the BC. Furthermore, the
payment of rewards provides a highly suitable countermeasure to dis-incentivize selfish customers.
Mitigators are incentivized to execute the final service rating step since otherwise, theywould deprive
themselves of payments. Also, it is possible to create circles by connecting different BloSS instances
through interoperability betweenBCs. This could be achievedby employing aNotary-based agnostic
solution such as [215, 216].

It is also important to note that there is a dichotomy in using reputation assessment mechanisms
within a cooperative alliance with pre-trusted members. If, on the one hand, there is the need to
prevent free-riding and abuses in the use of cooperative services, on the other hand, the pre-trust
requirement can reduce or even eliminate the need to add thesemechanisms based on trust between
members. However, it is understood that the great asset of collaborative defense against large-scale
DDoS attacks lies in its ability to distribute mitigation points. Therefore, in situations where there
are transitive trust relationships as such a particular memberA trust another B, and B trust a member
C, then A can trust C.

The need for trust between different organizations is a major social challenge whose mere use of
technology does not provide trust. For example, the leakage of information about attacks (e.g., fre-

166



quency, downtime) in a cooperative defense can generate impacts from a commercial point of view,
and with this, competitors can be exploited. In this sense, BC has the function of acting as a tool
capable of increasing trust levels betweenmembers who already have certain levels of trust with each
other - enough to collaborate in a cooperative defense. The addition of a BC-based reputation system
whose ranking can be calculated transparently allows such transitive trust relationships to be encour-
aged.

As incentives already stipulate social behavior, by providing a platform to exchange incentives,
BloSS creates a new scenario for mitigation defenses [81]. By extending cloud-based protection ser-
vices, a decentralized marketplace for protection services based on BCs is made possible based on
this design. It is essential that, in addition to trust, there are incentives that are based on currencies
or agreements for themutual exchange ofmitigation services for a cooperative defense to be success-
ful. In such a model, it will be possible for members to create strategic regional alliances and use a
portion of their infrastructure to perform mitigation services. Therefore, in combination with rec-
ommender services [71], as selecting a suitable protection provider based on specified requirements
can optimize costs.

Lastly, legal and regulatory aspects are often intertwined. In addition to the possibility of creating
circles of trust, which depends on the social requirements, multiple BloSS networks can be defined
for national or regional circles of trust, respectively. Also, such circles make it possible to discrimi-
nate selection criteria based on each operator’s legal settings, possibly restricting the participation or
interaction with particular regions or operators.
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7
Summary, Conclusions, and Future Research

This Chapter concludes the thesis summarizing the achievements, contributions, and future work,
which resulted in several contributions related the posed Research Questions (RQs).

7.1 Summary

The distributed nature of DDoS attacks suggests that a distributed and coordinated defense is nec-
essary for a successful defense. Although the advantages of distributed defenses are recognized in
the literature, still does not exist a widespread deployment of such systems because of their lack of
effectiveness and implementation complexities. In addition to technical complexities involving how
to share attack signaling information, the lack of incentives for third parties to actively participate in
mitigating DDoS attacks by using their infrastructuremakes the operation often not attractive. Thus,
asmajor outlines of Chapter 2 in this thesis, among the challenges of existing approaches are the high
complexity of operation and coordination, the need of trusted communication, and lack of incentives
for the service providers to cooperate.

Building upon those challenges this this thesis has proposed and investigated a novel technique
for implementing a decentralized cooperative DDoS defense based on an immutably and verifiable
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structure – Blockchain (BC). BloSS enables a flexible and efficient DDoS mitigation solution across
multiple domains based on a permissioned BC, in which only pre-selected operators participate in
the cooperative defense. The BC-based approach does not only enable the cooperative signaling of
attacks, but also provides for an immutable and transparent platform allowing for incentives to be
exchanged for mitigation services as well as tracking reputation. BloSS introduces a service model in
which costs can be shifted from the AS operators to potential customers subscribing to a purpose-
built Mitigation-as-a-Service (MaaS) offering. This works by directly using the fees paid by the cus-
tomer as incentives between the operator of the AS the customer resides in and the operators of the
ASes where the attack stems from.

The definition of contracts, especially SCs, stipulates the cooperative logic based on BCs and al-
lows for the increase of trust among cooperative operators due to their transparent exchange of se-
lected information and respective incentives on aper request basis. Hence, the reputationmechanism
is highly relevant to foster trust by allowing a mutual evaluation between providers of mitigation ser-
vice and customers (i.e., mitigator and target) in a transparent manner. The contract stipulated in
BloSS maps all possible alternatives for interaction between the two parties by stipulating deadlines
so that both parties provide input regarding the service and the rating of the service (rating).

Overall, the main achievement and advantages reached with the design and prototypical imple-
mentation and the evaluation of BloSS include (a) the use of an existing distributed infrastructure,
the BC, to flarewhite- or blacklisted IP addresses and to distribute incentives related to themitigation
activities requested. Furthermore, it provides a proof-of-concept for (b) a cooperative, operational,
and efficient decentralization of DDoS mitigation services, and (c) a compatibility of BloSS with ex-
isting networking infrastructures, such as SDN and BC.

The use of a purely software-based approachwith well-defined interfaces (API andWeb) and intu-
itive use, allows BloSS to be easily deployed and interconnected with standard networkmanagement
systems. As demonstrated in the evaluation Chapter 6, the prototype developed and evaluated lo-
cally was ported and deployed in a simple and efficient way in different virtual machines across the
world without the imposition of hardware and special registrations in the underlying network infras-
tructure. BC fits with an ideal platform for data replication among all members of the collaborative
defense if and only if based on a consensus protocol allowed to network members, which must be
selected according to pre-established criteria for alliance. In this sense, as discussed in Chapter 4, the
use of a consensus mechanism based on Proof-of-Work (PoW) in a collaborative defense setting is
unnecessary due to the strict need for confidentiality and performance.

BloSS balances confidentiality and performance characteristics using an off-chain communication
channel based on IPFS. In this way, on-chain communication is limited to the signaling process with-
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out revealing details of the mitigation service negotiation to other members of the BloSS-network.
In the design described in the Chapter 5, the data encryption strategy is presented through a com-
bination of asymmetric cryptography through RSA with 2048 bit keys and symmetric cryptography
through Fernet. In this way, blacklisted or whitelisted address lists are transferred off-chain via IPFS
while that of the terms of service is placed on-chain. In this regard, global experiments demonstrated
(cf., Chapter 6) that the protocol has an average execution time of 96.9 seconds to be completed in
all scenarios (different outcomes of the protocol).

7.1.1 Major Contributions

The main contributions of this thesis are the design of the approach and its proof of concept, as well
as the analysis of the literature providing an updated view of the state-of-the-art. Other contributions
are derived from these major contributions, which are, for instance, related to the prototyping of the
modules that belongs to BloSS duly documented in their related scientific publications.

• FosteringTrust in aCooperativeNetworkDefense. This is a fundamental point to leverage
the use of cooperative tools involving the exchange of critical information (e.g., information
in relation to attack and respective standards, impacts in terms of downtime, among others).
In addition to technical challenges concerning the signaling of attacks and the exchange of in-
formation between participants, trust betweenmembers in order to avoid informationmisuse
or malicious actions that has fundamental relevance. In this sense, although there is no purely
technical approach to guarantee the existence of trust, BloSS offers, through its blockchain-
based architecture, a decentralized and transparent tool serving as platform for signaling at-
tacks and verifying actions of members.

• Design andProof-of-Concept of aBlockchain-basedCollaborative SignalingApproach.
To the best of the author’s knowledge, this is the first work that combines in a cooperative
DDoS signaling system attacks BC concepts to provide incentives and reputation manage-
ment in this context. Henceforth, the main contribution of this thesis was the conception of
architecture and a system as a proof of concept showing that, while it is possible to simplify
the deployment and operation of collaborative defenses, it is also possible to include aspects
related to incentives, confidentiality, and legal aspects within the same system.

• Platform for theCreation ofOn-demandMitigation Services. BloSS’ design enable a plat-
form for mitigation services in a decentralized fashion. As highlighted in Chapter 2, there is
DDoS defense mechanism incorporating incentive mechanisms in exchange for cooperative
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mitigation services, the realization of which impacts operating costs. The BloSS design based
a state-machine smart contract where the outcome of each step is possible to be verified in a
transparent way for all members of the alliance, allows members in a BloSS-network to rent
their infrastructure based on incentives to cover these operating expenses.

• Analysis on How Cooperative Defense Challenges are Tackled in the State-of-the-art.
This thesis complements existing surveys in the area of collaborative defenses, analyzing the
current state-of-the-art, the challenges pointed out by these surveys. Namely, the challenges
raised in this thesis in the technological, social, economic, and legal areas. This updated viewof
the state of the art allows us to observe how relatively recent technologies such as SDN, NFV,
and current BC within this context, providing greater efficiency in signaling and mitigating
attacks. Hence, this thesis approached over 70 related references, organizing them based on
the action of the mechanism on the network (source, destination, network, or hybrid).

7.1.2 Review of Research Questions

Based on those contributionsmade in this thesis, the four research questions can be answered. Those
questions are reviewed, and the answers to them are provided as below:

RQ1: Can a BC-based cooperative system reduce operation and deployment complexities?
This is one of the main aspects considered in the design of BloSS to minimize the impact on
the underlying networking infrastructure. Hence, based on a software-based approach, it was
possible to observe a simplification of deployment and operation with BloSS, being used both
in virtualmachines and in systems based onARM(Raspberry Pi andASUSTinkerboard). On
the one hand, software-based approaches facilitate deployment and operation; on the other
hand, they can have a significant impact on the solution’s performance. Therefore, the sys-
tem’s evaluation was of fundamental importance to observe how the system behaves in differ-
ent environments (simulation, local, and global). Results presented in Chapter 6 show that
BloSS presents a latency for signaling attacks that allows a reaction insufficient time in the par-
ties involved (i.e., based on average duration times for large-scale DDoS attacks, which is the
scenario targeted for BloSS). Another decisive factor towards simplifying the operation is the
BloSS focus on signaling attacks without involving specific demands regarding the method of
mitigating attacks. Therefore, amitigation service between twoparties is specified, whichmust
mutually agree with the terms, including aspects related to the way of mitigating the attack.
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RQ2: Howtobalance transparencyandprivacy inacooperativesystem, increasing trustamong
cooperativemembers? While transparency is a crucial aspect of establishing trust, confiden-
tiality, and integrity of information concerning DDoS attacks is essential. BloSS handles this
trade-off with amix between information traded on-chain and the data needed tomitigate the
attack being sent off-chain to maintain the confidentiality and integrity of the information.
The cooperative signaling contract stipulates that on-chain information is limited to which
networks an AS operates, the stipulated incentive to carry out amitigation service, and its rep-
utation scores as a mitigator (M) and target (T). Once a contract is initiated between a T and
an M, data is sent off-chain according to the scheme described in encryption procedure (cf.,
Figure 5.9). Also, BloSS is suitable for alliances with a pre-established level of trust, in which
it is possible to foster an increase in their trust levels through the transparent and verifiable
data structure. However, by using BloSS, it is impossible to establish trust (and cooperation)
between members who do not trust each other initially. Lastly, while BloSS guarantees the
confidentiality and integrity of information in transit (i.e., data transmission), aspects related
to trust, which permeate human relationships, are often subjective and dependent on non-
technical aspects.

RQ3: How toprovide financial incentives to foster cooperative behavior among itsmembers?
Through the BC-based structure, BloSS establishes the exchange of incentives for perform-
ing straightforward mitigation services. However, more important than just enabling the ex-
change of incentives is the approach described in the protocol in order to prevent fraud once
there are no ways to guarantee proof of the effectiveness of a mitigation service (i.e., proof-
of-mitigation). In this sense, the cooperative signaling protocol (cf., Chapter 4) establishes
stages of mutual evaluation between T and M so that both interacting parties evaluate each
other. Also, the cooperative signaling protocol foresees in its extreme design cases where T
andM do not reach consensus with each other (cf., Scenario 9 in Figure 4.2), and the situation
needs to be escalated for off-chain evaluation. In these cases, an evaluating committee within
the participating network can verify the outcomes of each stage in the protocol and evaluate
the best consensus decision. However, it is noted that there is no automated (i.e., on-chain)
way to resolve conflicts in Scenario 9.

RQ4: How to ensure compliance across different jurisdictions? It is a significant concern in the
legal area but not the technical sphere since different countries and regions have different laws,
as well as companies, have internal policies to preserve both consumer information and their
public image. From a technical perspective, such alliances can be formed between members

172



with aminimum level of pre-established trustmembers and/or regionswith similar legislation.
Hence, such points can be checked by determining local parameters (i.e., at the BloSS dApp)
concerning the participation of the collaborative information network.

7.2 Conclusions

Basedon contributions and responses to research challenges, it is possible to conclude certain general
aspects concerning cooperative defenses, outlined as below:

• A BC-based cooperative defense can foster trust, but it is not able to create trust between,
initially, unknownmembers. Trust is a major aspect of a cooperative defense, and there are no
technical approaches to create trust. However, through a transparent and verifiable structure,
while sensitive information is sent confidentially off-chain, it is possible to foster an increase
in trust in the cooperative network.

• Limiting functions in a cooperative system can be an important step in expanding its applica-
bility. Thus, the inclusion of mitigation functions or a design strongly coupled with a specific
type of technology or hardware can negatively affect the participation in the collaborative de-
fense. In this sense, the software-based approach presented serves as evidence of wide appli-
cability in different architectures focusing only on signaling attacks but not specifying how a
mitigation service should be performed.

• Cooperative signaling andmitigation of DDoS attacks are a near real-time instead of real-time
services. Hence, it is not a service that needs to be performed in the temporal order ofmillisec-
onds to seconds, but the space of minutes-hours. In this sense, performance is of secondary
importance in collaborative defense, with other elements such as trust (confidentiality, in-
tegrity), incentives, and legal aspects being most relevant to cooperation.

• Aspects related to incentives to perform tasks to detect or mitigate DDoS atteacks are often
overlooked in cooperative defenses. This is a conclusion derived fromChapter 3, in which it is
possible to verify that no work listed mentions the financial aspect as flawless in the operation
of collaborative defense. However, tasks related to detection andmitigation imply operational
and capital expenses, which must be observed to encourage participation.

• Although challenges in the legal sphere are relatively easy to resolve from a technical point of
view, the complexity of internal and external legislation impairs the information sharing. For
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example, in many situations, the sharing of IP addresses (which can be correlated to individu-
als), implies a violation of personal rights. Therefore, sharing between different blacklisted IP
addresses organizations may violate legislation, although it is possible to guarantee the confi-
dentiality and integrity of the information in transit.

7.3 Future Research

Based on an even further increase in traffic and the frequency of DDoS attacks, it is expected that
future network and service management operations will also have to encounter alternatives equally
distributed. While existing cooperative approaches present operational challenges, future work for
BloSS involves analyzing how actors (especially Ts andM s) are impacted by different incentive val-
ues required to perform a mitigation service, thus, fostering the development of DDoS protection
markets. Then, such markets can define different tokens based on the economic and geopolitical
conditions of the alliance members, in which a token can represent a certain value of a fiat currency
and be used to exchangemitigation services. The value of a token unit can be defined not only by the
operational cost ofmaintaining themitigation of the attack, but also by a series of economic, political,
and ethical factors, involving alliance members to whom they can influence the value. the token and
the cost of implementing a mitigation service.

Considering a technical perspective in the current implementation of BloSS, improvements are
also possible. Thus, instead of storing raw names and strings in the BloSS Register, hashes of data
or even hashes of the storage address could be persisted within the BC since transparency has to be
taken into account. Based on those mechanisms ratings of theM or the T, the BloSS register can be
extended to enable a ranking and separate positively rated actors from negatively rated ones.

Future runs in a real DDoS scenario are still to be tested. Depending on the scenario, deadlines
intervals can be improved to enable DDoS mitigation. When testing the cooperative signaling pro-
tocol, it might not be apparent during the initialization of how long the mitigation process may take.
Therefore, it may be the case that a different mechanism should be implemented to predict how long
actual mitigation takes or the possibility to be extended such that aM that is actively defending will
still be rewarded, instead of missing a deadline. Also, instead of storing raw names and strings in the
Register (i.e., the rendez vous to start a cooperative protocol), hashes of the data or even hashes of the
storage address could be stored on the BC. Based on this, ratings ofM or the T could be extended in
the Register to enable the possibility of ranking and separating positively rated actors fromnegatively
rated ones.
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Based on the experimental nature of the BloSS concept, it is envisioned its integration and de-
ployment in research projects cybersecurity at a nation-wide level. For example, the Horizon 2020
CONCORDIA project to which related tasks and various discussions influenced design decisions
related to providing incentives. In this sense, since the project is composed of different industry and
academic organizations, its deployment in an experimental nature could reveal further insights for
improving the BloSS prototype in a realistic setup and possibly based on the signaling of traces of
real cases.

It is also essential to note that the approach independent of specific underlying technologies con-
tributes to this thesis. Thus, several aspects of implementation can be optimized so that the evalua-
tion chapter’s results can be enhanced. In this context, it is possible to develop a BC-based structure
specially crafted to exchange information in the context of collaborative defense, simplifying the def-
inition of the contract on a native platform and the exchange of off-chain data through encryption
mechanisms.
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A
Description of DDoSCooperativeMechanisms

This appendix presents details of each work presented in the different categories in the Chapter 3.
Sections are organized according to the DDoS mechanism placement in the network. Section A.1
presents source-based, Section A.2 presents destination-based mechanisms. Section A.3 describe
network-based. Lastly, Section A.4 detail hybrid DDoS mechanisms.

A.1 Source-basedDDoSMechanisms

MANANet [140]

The MANANet system [140] works like a reverse firewall preventing DDoS attacks by limiting the
rate of ”unexpected”TCPpackets at a network’s exit router. Thus,MANANetderives frompreviously
sent traffic the sequence numbers of expected packets. Only outgoing packetsmatching the expected
sequence number range will be forwarded. MANAnet can be used in a cooperative scenario where
all participating routers are compatible with exchanging additional path information. However, it is
a commercial solution, and details about its operation are not fully disclosed.

DDoS netWork Attack Recognition and Defense (D-WARD)

D-WARD is a source-based defense strategy that monitors the outgoing traffic and compares it to
pre-defined traffic models, which helps the system decide whether a specific flow includes malicious
traffic [150, 151]. The D-WARD system is installed on multiple systems. However, there exists no
coordination among these systems, which makes D-WARD a centralized approach. As soon as a
network flow being monitored by D-WARD is detected to be of malicious origin, the traffic is rate-
limited to stifle the attack’s effectiveness [151]. Rate-limiting the flows allows ongoing monitoring
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to lift the rate limit as soon as the flow ceases to exhibit malicious characteristics. This is preferable to
outright stopping the flows since wrong classifications cannot be detected if continuous monitoring
of the respective flows is unavailable. As soon as a network flow beingmonitored by D-WARD is de-
tected to be of malicious origin, the traffic is rate-limited to stifle the effectiveness of the attack [151].
Rate-limiting the flows allows ongoing monitoring to lift the rate limit as soon as the flow ceases to
exhibit malicious characteristics. This is preferable to outright stopping the flows since misclassifica-
tions cannot be detected if continuous monitoring of the respective flows is unavailable.

MUlti-Level Tree for Online Packet Statistics (MULTOPS) [76]

TheMUlti-LevelTree forOnlinePacket Statistics (MULTOPS)data structure pursues a similar strat-
egy as D-WARD by analyzing specific characteristics of the ingressing and egressing traffic of an AS
[76]. Instead of gathering statistics and finding patterns that match a pre-definedmodel, MULTOPS
is an attack-resistant data structure storing statistics about aggregated traffic to and from the AS it
is running on. These statistics are then used to find significant differences between the amount of
incoming and outgoing traffic, which would indicate an attack going in one direction. This is based
on the assumption that benign traffic exhibits symmetric characteristics for incoming and outgoing
traffic since the other host [76] generally acknowledges packets from one host.

Click Router [113]

[76] implemented MULTOPS as a module of the Click router [113]. The Click router’s advantage
is the ability to chain multiple modules, so-called ”elements” together to form a processing pipeline
for incoming packets. Each element only performs simple functions such as ”communicating with
devices, queuing packets, and implementing a dropping policy ”[76]. The MULTOPS implemen-
tation contains two elements called ”IPRateMonitor” and ”RatioBlocker”, which are directly inter-
connected so that the rate of traffic for incoming and outgoing packets is monitored. Based on these
monitored rates, packets are dropped if the ratio is out of balance according to the pre-defined thresh-
olds.

Lu, Yiqin and Wang, Meng [136]

[136] proposes a new detection algorithm based on the statistical inference model and response
scheme through the abilities of Software-Defined Networking (SDN) and sFlow, a tool to sample
SDNflows. Taking advantage of SDN’s global network view, the authors define ametric to detect co-
ordinated actions between bots within its network, the DCD (Distribution-Collaboration Degree).
TheDCDmetric aims to quantify the degree of distribution and collaboration of flow on one dimen-
sion and quantify this flow’s intensity on another dimension. While the sFlowworks as amonitoring
tool collecting samples of flows, the metric is implemented at the SDN controller. In summary, the
authors detect in a sliding timewindowwhenmany flows are installed targeting the samedestination,
an activity that is classified as an attack.
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Rojalina Priyadarshini and Rabindra Kumar Barik [193]

An approach also based on SDNbut usingmachine learning to detect traffic anomalies are presented
in [193]. The intended scenario is Fog computing, where the SDNdetection system is implemented
at the edge. Priyadarshini’s systemuses the Floodlight controller ( Java-based SDNController widely
used for prototyping) and amachine learningmodule to distinguish anomalies in traffic; the authors
use a learning model based in a Long Short Term Memory (LSTM) network. Thus, the controller
performs a periodic pooling on the switches to collect flow data, updating the statistics table used to
verify, in the machine learning model, if the traffic pattern corresponds to attack patterns. However,
similarly to the other proposals, this approach imposes a computational overhead on the controller
to verify whether the traffic patterns correspond to attacking patterns at eachmonitoring period. Be-
sides, the proposal fits as an enabler of cooperative solutions to detect patterns in multiple edges.

Yi, Fasheng and Yu, Shui and Zhou, Wanlei and Hai, Jing and Bonti, Alessio [260]

[260] approaches source-based filtering as with a different angle by considering the issue of IP ad-
dress spoofing as a support tool for cooperative mechanisms. The authors accumulate the source
information of its clients, such as source IP address, and the number of hops from the server (i.e., the
TTL) to construct a table based on the statistics of source IP addresses under hops from that source
IP addresses to the server in reasonable condition. Then, during an attack, a possible verification be-
tween collaborating organization could be based onmatching destinationwith source information to
check whether sources were spoofed. While [260] can be seen as an enabler towards cooperative de-
fenses by working independently at the potential victim side, depending on the number of legitimate
customers, the system may require large volumes of storage and require efficient address verification
schemes.

Soldo, Fabio and Argyraki, Katerina and Markopoulou, Athina [227]

A similar approach is proposedby [227], inwhich the authors consider anAccessControl List (ACL)
filtering approach. ACL-based approaches can createwhite or blacklists of IP addresses, storing these
in the memory of routers, to allow or deny external access. The authors focus on the proposal of a
method for optimizing the memory space used by these ACLs by optimally selecting which source
prefixes to filter for various realistic attack scenarios and operators’ policies. Even if the authors seek
to make address storage more efficient, detecting attackers’ central problem (or differentiating those
from legitimate users) remains. This highlights the central problem of efficiently detecting DDoS
attacks involving thousands of devices that often have traffic patterns similar to legitimate users.

Badis, Hammi and Doyen, Guillaume and Khatoun, Rida [15]

A source-based and collaborative approach is proposed by [15]. Although the authors state that their
proposal is collaborative, such collaboration takes place in a cloud systemoperated by a single organi-
zation, i.e., there is coordination for the exchangeof informationbetween trafficflowwithin the cloud.
The approach relies on an overlay network of hypervisor-level Intrusion Detection Systems (IDS) to
detect coordinated traffic anomalies (i.e., sudden burst traffic to a single destination). Therefore, the
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approach is similar toLu et al. [136] andYi et al. [260]detectingbots operating thenetworkperimeter
but expanding this detection point to multiple servers on which the hypervisor is running.

A.2 Destination-basedDDoSMechanisms

Management Information Base (MIB) [29]

MIB data contains statistical variables about the traffic in a Network Management System (NMS)
[29]. These variables are organized in IP, ICMP, TCP, UDP, and SNMP, generally grouping the
variables with the corresponding protocols [29]. The goal in utilizing the MIB for destination-based
DDoS prevention is to deduce patterns before a DDoS attack based on the attacker’s preparations to
instruct the slave machines utilized in a DDoS attack [29]. This represents a muchmore efficient ap-
proach towardDDoSmitigation, especially considering the high volume of attack traffic destination-
based approaches typically need to defend. By setting up such an online monitoring solution in the
form of an Intrusion Detection System (IDS) for DDoS attacks, blocking attackers can already oc-
cur throughout the attack’s preparation stages instead of after the attack is already taking place and
wasting resources [29].

This scheme can already be applied for destination-based mitigation where the NMS defending
against the attack only manages the DDoS target. However, if attackers are also part of the managed
domain, additional instructive traffic between the attackmaster and the attack slaves can be analyzed
to generate pointers for an early warning system. The proactive detection of attacks works in three
steps [29]:

1. The first step is concerned with collecting information about possible MIB variables suitable
to act as precursors for an imminent attack at a target host. These variables can be found by
analyzing traffic data from past attacks and determining patterns based on the available MIB
variables.

2. If attack hosts are within the NMS domain being protected, correlations between MIB vari-
ables for the attack hosts and the variables for the target hosts from step 1 can be calculated.

3. These correlations can then be used to increase the significance of the precursors found in step
1 to react to imminent attacks even faster.

Path identifier (Pi) [258]

Path identifier (Pi) [258] is a consistent approach based on packetmarking toward fingerprinting the
path of packets traversing the Internet. In this sense, the approach is not concernedwith reconstruct-
ing the path of marked packets but providing the packet marking infrastructure in which a victim
under attack could implement another approach to reconstruct the path and distinguish legitimate
users from attackers. This allows a victim to employ the Pi mark to filter out packets matching the
attackers’ identifiers on a per-packet basis, which is considered a proactive role in defending against
a DDoS attack [265]. However, Pi’s relies on having its solution implemented on at least half of the
Internet’s routers to be effective, which can be considered a significant drawback of the solution.
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Takemori, Keisuke and Nishigaki, Masakatsu and Takami, Tomohiro and Miyake, Yu-
taka [238]

[238]proposes abotdetection technique that checksoutboundpacketswithdestinationbasedwhite-
lists. Whitelists are generated by observing not infected computers (i.e., the solution is intended for
PersonalComputers - PC) during the PC’s non-operating time, inwhich a daemon is running. When
a PC sends during the non-use time traffic to destinations outside the whitelist, it is considered in-
fected. Whitelists are populatedwith IP addresses of public services (e.g., DNS servers, patch servers,
antivirus servers), and after the first installation of the operating system, the learning period takes
place. After the learning period, packets that do not match any whitelist entry are dropped.

Hop-Count Filtering (HCF) [99, 250]

Hop-Count Filtering (HCF) ’s main idea is to detect spoofed packets by looking at the number of
hops contained in the packets [99, 250]. This information is inferred from the Time-To-Live (TTL)
field in the IP header, which cannot be forged by attackers. HCF requires a packet-level inspection
system based on an IP hop-count mapping table, which in cases of large-scale DDoS attacks may
overhead the detection system by increasing themapping table. AlthoughHCF can be deployed in a
collaborative context, HCF itself does not propose a collaborative approach to alleviate the destina-
tion’s detection and mitigation efforts.

Yu, Shui and Zhou, Wanlei and Doss, Robin and Jia, Weijia [263]

[263] proposes a traceback approach using flow entropy variations between normal and DDoS at-
tack traffic, which varies from standard used packet marking techniques since most solutions are ei-
ther based on probabilistic or deterministic packet marking (PPM or DPM, respectively). The ap-
proach proposed byYu et al. [263] requires that routers store information about flow variations check
whether those variations correspond to an attack pattern. Thus, a victim should identify which up-
stream routers are in the attack tree, and based on the flow entropy variations i.e., sequence of packets
between source and destination, submit mitigation requests to those upstream routers. Despite re-
quiring less overhead on routers than traditional PPM or DPM for storing information on variations
in flow, large-scaleDDoS attacks tend to considerably undermine the performance of solutions based
on the on-packet-level analysis.

Packetscore [111]

Packetscore [111] is a destination-based approach focusing on automated attack profiling and dis-
carding. The key idea is to prioritize packets that are legitimately recognized (i.e., whitelisted sources)
by increasing their points in a scoring system and defining low priorities for packets of unknown
sources. In case of an attack and, once the score of a packet is computed, Packetscore can perform
the selective packet discarding dynamically adjusting the dropping threshold based on the score of
new incoming packets and the current overload of the system. However, packet score calculation is
not an optimal solution for large-scale attacks. Such attacks would require from the detection system
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an enormous processing capacity in the network equipment, becoming infeasible in attacks of great
magnitude such as the Botnet-based ones (e.g., Mirai DynDNS attack [104]).

Peng, Tao and Leckie, Christopher and Ramamohanarao, Kotagiri [182]

[182] present History-based IP Filtering (HIF), an approach similar to [238], but applying a white-
list of IP addresses in routers instead of PCs. An edge router keeps the history of legitimate IP ad-
dresses previously appeared in the network, and when the router is overloaded, the history is used to
determinewhether to forwardor discardpackets. HIF’s strategy is relatively simple since edge routers
(deployed at the destination or DDoS target) generally have more spare CPU time per packet than
core routers, and their emphasis on the use of heuristics to keep the history up to date. Nonetheless,
the drawback is similar to Packetscore [111] in the sense thatHIF’s approach falls short in large-scale
attacks with traffic patterns similar to legitimate users is the case for Botnets based on thousands of
IoT-based bots (e.g., Mirai).

FlowGuard [98]

FlowGuard [98] presents amethod to identify and classify IoT traffic at the network edge, i.e., servers
deployed at the edge of the IoT network can detect whether inbound traffic is an attack. FlowGuard
builds upon two significant components: Flow Filter and FlowHandler. While the formermaintains
flow filtration rules generated by the Flow Handler, the latter analyzes suspicious flows for DDoS at-
tack identification and classification and filtration rule generation using self-evolving machine learn-
ing algorithms.

Cziva, Richard and Pezaros, Dimitrios [54]

Theuse of resource virtualization allows themost efficient use of hardware. Network FunctionVirtu-
alization (NFV) [164] can provide an efficient solution to the deployment conundrum by allowing
the mitigation system to be encapsulated as Virtualized Network Functions (VNF), which can di-
rectly be deployed on commodity hardware running on-site. In this sense, [54] propose VNF as a
similar approach to IP traceback to distribute network functions in mitigating DDoS attacks. For
instance, such NFV could block malicious traffic by creating a new iptables firewall and setting up
DROP rules on the selected traffic. Advantages are the high degree of isolation of this approach and
the minimal code necessary to conduct the mitigation, therefore, directly contributing to a certain
degree of trust by implicitly ensuring that the correct code is executed.

Cloud-based Protection Services [3, 43]

Another typical approach is to use cloud-based protection services. These serve as a proxy receiving,
analyzing, and redirecting traffic to the target, which delegate detection and mitigation tasks to the
protection provider (e.g., Akamai [3] or CloudFlare [43]). These cloud-based protection services
function as a typical destination-based mechanism (e.g., deploying intrusion detection systems, fire-
walls, and other tools) but contain an infrastructure with a higher capacity for detecting andmitigat-
ing attacks. However, despite having dedicated resources to mitigate DDoS attacks and relying on
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incentives to perform this service, these are still centralized approaches and, therefore, vulnerable to
large-scale attacks as observed in the DynDNS attack [104].

A.3 Network-BasedDDoSMechanisms

Distributed Packet Filtering (DPF) [176]

Route-basedpacketfiltering [176]ormarking [177] are twopopular approachesdeployed innetwork-
basedmechanisms. DPF (Distributed Packet Filtering) is proposed in [176], as a proactive approach
to filter out a significant fraction of spoofed packet flows and prevent attack packets from reaching
their targets in the first place. The approach uses routing information to determine whether pack-
ets arriving at a router are valid concerning its inscribed source and destination addresses, given the
network topology’s reachability constraints.

Probabilistic Packet Marking (PPM) [177]

The route-based packet marking, i.e., a Probabilistic Packet Marking (PPM) [177] occurs at the for-
warding and discarding of packets based on either a table look-up and a filter table update. This corre-
sponds to probabilistically “sampling” the route undertaken by an attack based on a constant space in
the packet header independent of hop count, whichprovides the critical advantage over deterministic
packet marking. The authors show that the probabilistic packet suffers under IP spoofing by attack-
ers and exists a trade-off between the ability to traceback attackers and the severity of a DDoS attack.
Thus, while PPM is useful against single-source attacks, it is potentially vulnerable when subject to
large-scale DDoS attacks once these are typically originated from many sources.

Probabilistic Filter Scheduling (PFS) [222]

The Probabilistic Filter Scheduling (PFS) approach [222] is a variation of the PPM [177] to identify
and create traffic filters. ThePFSfilter routers identify attack paths using probabilistic packetmarking
and maintain filters using a scheduling policy to maximize defense effectiveness. Thus, PFS assumes
points of trust i.e., routers in which PFS-enabled routers are installed over intermediate networks to
mark packets. A filtering router writes its IP address to the IP header of packets, so a path can be
determined by identifying the filter routers it has passed through. Then, PFS can propagate filters to
the optimal routers located closer to the attack source and avoiding less attacking traffic to traverse
the Internet until its target.

Adaptive Probabilistic Filter Scheduling (APFS) [223]

Adaptive Probabilistic Filter Scheduling (APFS) [223] extends its prior work PFS by combining
the PPM [177] approach. The adaptability from APFS is calculated based on (1) hop count from
a sender, (2) the filter router’s resource availability, and (3) the filter router’s link degree. Based on
the effectiveness (i.e., how accurate those three points are calculated), it would lead a victim to receive
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more markings from more effective filter routers, and thus, APFS would show a faster filter propaga-
tion than the hop-by-hop basis. Thus, APFS requires cooperation between APFS-enabled routers to
install filters close to the source of the attack adaptively source.

Active Networking [233]

Based on the concept of active networks from the 90’s [233] propose an automated defense against
DDoS attacks. Active networks are also one of the predecessor concepts of SDN, describing a net-
work in which infrastructure nodes (switches or routers) and end hosts serve as platforms for the
execution of task-specific programs [239]. Thus, the approach’s fundamental concept is to use ac-
tive networks to distribute intrusion detection and response rules once a destination-based system
detects an attack. Then, similarly to IP traceback mechanisms [100, 263] rules can be installed on
compatible network devices to mitigate the closest possible attack to the source.

Cooperative Intrusion Traceback and Response Architecture (CITRA) [219]

Aligned with the proposal for cooperation between network-based routers is CITRA (Cooperative
Intrusion Traceback and Response Architecture) [219]. CITRA provides an example of a coop-
erative agent-based system that enables interaction between different intrusion detection systems,
routers, and firewalls. Similar to APFS [223], CITRA’s architecture utilizes neighborhood structure
where the information about detected intrusion is propagated back through the neighborhood to the
source of the attack and submitted to the centralized authority.

Slow HTTP DDoS Defense Application (SHDA)

Anetwork-basedDDoSdefensemethod is proposed in [90], namely SlowHTTPDDoSDefenseAp-
plication (SHDA) targeting slow HTTP attacks. The SHDA is proposed as an application running
on top of an SDN controller, analyzing requests web server requests, i.e., flow counters toward a web-
server. SDHA analyses suspicious incomplete HTTP requests from attackers based on a timeout-
basedDDoS detection, it requests the SDN controller to update the flow rules to block the attacker’s
flow at the network switches. Although the software-only approach facilitates its deployment on net-
work equipment, it is possible to export flows to a generic server; there is no cooperation between
multiple SDHA applications in the network for a global view of the attack.

MiddlePolice [132]

MiddlePolice [132] is a mechanism that works by receiving input from destination-based mecha-
nisms to effectively enforce destination-chosen policies, while requiring no deployment from unre-
lated parties. In this sense,MiddlePolice operates as an environment where systems under attack can
request to deploymitigation policies on demand, combining cloud-based solutions (e.g., Akamai and
CloudFlare [3, 43]) with the destination-based control of capability-based systems. Further, the sys-
tem uses a set of traffic policing units (referred to asmboxes by the authors), relies on a feedback loop
of self-generated capabilities to guide scheduling and filtering.
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A.4 HybridDDoSDefenseMechanisms

Secure Overlay Services (SOS) [103]

The overlay network proposed in [103], termed SecureOverlay Services (SOS), was developed con-
sidering the challenges of communicating P2P systems to provide security services. The system com-
bines secure overlay tunneling, routing via consistent hashing, and filtering capabilities on the peers.
In particular, SOS prevents members of the overlay network from performing DoS attacks on the
channels (i.e., malicious members would prevent honest communication by oversharing informa-
tion), by proposing a proactive filtering mechanism on nearby networks.

Technical: Software-based approach whereas the communication between peers is tunneled.
Social: Participating members are considered trusted and are authenticated.
Economical: Not addressed.
Legal: Partially addressed once members are considered to be trusted.
Year: 2002.

Pushback [95, 139]

Pushback [95, 139] is a solution that is based on a similar (packet-marking) proposal but including
mitigation functions for dropping packets. Pushback works rely on an Aggregate-based Congestion
Control (ACC) concept, in which ACC imposes a traffic shaping on subsets of traffic (i.e., aggre-
gations) defined by some characteristics such as specific destination port or source IP address. It
is a router-based solution that allows a router to request adjacent upstream routers to rate-limit the
specified aggregates and prevents upstream bandwidth (i.e., outbound traffic) from being wasted on
packets that are only going to be dropped downstream.

Technical: Hardware-based approach requiring support on routers.
Social: Members are considered trusted.
Economical: Not addressed.
Legal: Partially addressed once members are trusted.
Year: 2002.

Coordinated Suppression of Simultaneous Attacks (COSSACK) [175]

An overlay network built on border routers of the edge networks based on assumptions that border
routers need to have ingress/egress filteringmechanisms and prevent IP spoofing [175]. COSSACK
is based on two main components, an IDS (Snort was used as a proof-of-concept) and a watchdog.
While the IDS collects traffic statistics for different (including suspect) flows, the watchdog receives
data from the IDS and applies filters on the routers when the victim detects an attack, the watchdog
multi-casts attack notification to the watchdogs at the source networks to suppress the attack close to
the source.
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Technical: Hardware-based approach requiring support on border routers and IDS system.
Social: Members are considered trusted.
Economical: Not addressed.
Legal: Partially addressed once members are trusted.
Year: 2003.

Mayday - Distributed Filtering for Internet Services [8]

[8] combines overlay networks with lightweight packet filtering to defend againstDDoS attacks. The
overlay network generalizes the SOS [103] approach (with a similar design choice of authenticator
and overlay routing), creating a secure network of authenticated and verified peers. Based on such
generalization, Mayday supports different schemes using trusted or semi-trusted nodes to differen-
tiate between legitimate and malicious clients, thus providing different balances of security and per-
formance. One of the main benefits of the architecture proposed inMayday is its flexibility, allowing
different instances ofMayday to trade security for performance to create a better system thatmatches
their needs.

Technical: Hardware-based approach similar (and generalizing) the SOS approach.
Social: Support different schemes of trusted and untrusted peers.
Economical: Not addressed.
Legal: Possible to define circles of trusted peers.
Year: 2003.

Internet Indirection Infrastructure (i3) [234]

The Internet Indirection Infrastructure (i3) was proposed in 2004 as a general overlay network (i.e.,
not only to counter DDoS attacks), offering a rendezvous-based communication abstraction [234].
Insteadof explicitly sending apacket to anend-host, eachpacket is associatedwith an identifier, which
is then used by the receiver to obtain delivery of the packet. The overlay is composed of nodes that
store triggers and forward packets (using IP) between i3 nodes and end-hosts.

Technical: Software-based approach proposed as a general overlay network.
Social: Not addressed, no reputation or trust schemes defined.
Economical: Not addressed.
Legal: Interaction with all subscribed peers.
Year: 2004.

Koutepas, Georgios and Stamatelopoulos, Fotis and Maglaris, Basil [118]

[118] propose a cooperative intrusion detection and reaction (i.e., mitigation) framework anti DDoS
attacks. The proposed approach relies on a trusted community that may cooperate on free will by ex-
changing security information on possibleDDoS attacks. At this point, the assumption that all mem-
bers must be trusted can limit the applicability of the solution in different organizations with similar
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objectives within a consortium. In addition, free-will-based cooperation allows problems with the
misuse of the collaborative platform by free-riders. On a technical basis, the main building com-
ponent of [118] solution is the Cooperative anti-DDoS Entity, a software system deployed in each
participating network domain that supports secure message exchanges and local responses tailored
to individual sites’ policies.

Technical: Software-based approach proposed as a general overlay network of IDS’s.
Social: Based on trusted members.
Economical: Not addressed.
Legal: Partially addressed once members are trusted.
Year: 2004.

Active Internet Traffic Filtering - AITF [10]

AITF [10] is proposed as a distributed filtering protocol to counter large-scale DDoS attacks that
leverage recorded route information toblock attack traffic. A record route is anoption that routers can
insert their IP address into eachpacket, enabling themto tracebackpackets’ origin. Like source-based
mechanisms, a significant challenge lies in distributing filters in a scalable way among AITF peers. In
this regard, AITF attempts to install filters as close as possible to the traffic sources by implementing
an IP traceback system[263] that stamps their IP addresses to eachpacket. Filters are proposedbased
on hardware ACL (Access Control Lists) implemented by each peer to match white or blacklisted
network flows.

Technical: Hardware-based approach proposed as a general overlay network.
Social: Members are considered to be trusted.
Economical: Mention incentives for deployment at edges but based on free will.
Legal: Partially addressed once members are trusted.
Year: 2005.

DefCOM [151]

It is one of the significant proposals toward cooperative network defenses. It proposes an overlay
network based on a Peer-to-Peer (P2P) gossip-based protocol to facilitate coordination among peers
with inherent scalability. DefCOM is specifically geared toward protection against flooding DDoS
attacks and focuses on three critical defense functionalities [169]:

• Differentiating between benign and attack traffic through traffic classification

• Rate-limiting attack traffic to free resources

• Alert generation to signal all members of the cooperative defense about the IP address of the
attack target and rate limits required to resolve traffic bottlenecks for the attack target
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The strength of the DefCOM system lies in the highly distributed and scalable overlay network
used for communication. However, the overlay network is only used for control messages; data pack-
ets still travel on the data links defined by the underlying routing protocols [169]. For traffic clas-
sification purposes, they used D-WARD [151] but deactivated all attack mitigation functionality of
D-WARDto reduce it to a simple trafficclassificationengine. Byutilizing the existing source-basedD-
WARD classifier and implementing it in an overlay network, communication among multiple peers
can be leveraged to make the overall mitigation system much more efficient than the centralized ap-
proach.

Technical: Software-based overlay network geared toward scalability.
Social: Members are considered to be trusted.
Economical: Not addressed.
Legal: Partially addressed once members are trusted.
Year: 2006.

Zhang and Parashar [266]

An overlay network to detect and mitigate DDoS attacks is presented in [266]. It consists of two
key stages to exchange attack information between independent detection points to aggregate infor-
mation about the overall observed attacks. While the first consists of detecting attacks relying on
a variety of existing IDS (e.g., Snort, Bro), the second is based on a gossip-based communication
mechanism to share information among the defense nodes, and increase the detection accuracy. The
authors emphasize the use of collaboration (i.e., communication) increases the precision of the de-
tection and adjusts the rate limit mechanism of each defense node. However, [84] et al. disregards
the existence of malicious nodes on the network, as described in the SOS [103] for instance, which
can pollute the communication channel with malicious messages.

Technical: Hardware-based overlay focused on cooperative DDoS detection.
Social: Members are considered to be trusted.
Economical: Not addressed.
Legal: Partially addressed once members are trusted.
Year: 2006.

Speak-up [248, 249]

Speak-up[248, 249] is adefensemechanismthat, unlike theprevious, is designed todefendapplication-
layer attacks. Speak-up is based on the principle of offense-defense by asking its clients to increase
the volume of traffic sent, supposing that attackers are already using their maximum available band-
width, and thus, they will not be able to react to the request. Hence, legitimate users, not using all
bandwidth, can drastically increase the data volume. The goal is that the legitimate users crowd out
the malicious ones. This technique is only usable against session flooding attacks and not in case of
request flooding or an asymmetric attack. However, as a significant drawback of Speak-up, the tech-
nique is not applied to volumetric attacks at the network and transport layers, which do not know the
application layer.
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Technical: Software-based approach focused on application-layer DDoS attacks.
Social: Members are considered to be trusted.
Economical: Not addressed.
Legal: Partially addressed once members are trusted.
Year: 2006.

Chen, Yu and Hwang, Kai and Ku, Wei-Shinn [39]

[39] proposed a distributedDDoSdetectionmechanism targeting core networks namedDistributed
Change-point Detection (DCD) based on a Change Aggregation Tree (CAT) mechanism. A CAT
operates at the router level fordetecting abrupt changes in trafficflows, andwhenanattack is launched,
the routers can observe changes in the spatial-temporal distribution of traffic volumes [39]. CAT’s
within the DCD are organized according to a hierarchy, in which edge routers are at the lower hier-
archy level, and core routers are at a higher level.

Technical: Hardware-based approach requiring modified routers.
Social: Members are considered to be trusted.
Economical: Not addressed.
Legal: Partially addressed once members are trusted.
Year: 2007.

Defense and Offense Wall (DOW) [261]

TheDOW(Defense andOffenseWall) is amechanismusing the Speak-Up technique combinedwith
an anomaly detectionmethod based onK-means clustering [261]. The anomaly detection algorithm
is intended to detect session flooding, request flooding, and asymmetric attacks. Further, the authors
propose an encouragement model to incentivize clients whose sessions are dropped and refused by
the K-means anomaly detection model, to send more session connection requests. Similar to Speak-
Up, legitimate users increase their rate so that they become more likely to be served, resulting in
dropping suspicious and rising legitimate sessions.

Technical: Software-based approach build upon the Speak-Up approach.
Social: Members are considered to be trusted.
Economical: Propose an encouragementmodel to incentivize participation based on technical
elements.
Legal: Partially addressed once members are trusted.
Year: 2007.

StopIt [129]

To Filter or To Authorize (StopIt) [129] allows third-parties to install filters to block undesirable
traffic. StopIt has a closed-control and open-service architecture, which means that only authorized
members can request filters’ deployment and, in turn, eachmember canbe requested todeploy filters.
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It uses an authentication system for sources that prevent IP address spoofing. StopIt uses hierarchical
queuing (first based on the source AS and then based on the source IP address) at congested links
to separate legitimate traffic from attack traffic. Further, StopIt assumes that it exists an efficient de-
tection system relying on authenticated nodes to install filters, further being able to recognize when
authenticated nodes attempt a filter exhaustion attack.

Technical: Hardware-based approach including filtering capabilities.
Social: Members are authenticated but provide detection of misbehaving peers.
Economical: Not addressed.
Legal: Partially addressed once it is possible to select members to interact.
Year: 2008.

Trust Management Helmet (TMH) [262]

TrustManagementHelmet (THM) uses trust to differentiate between legitimate users and attackers
[262]. The idea is that legitimate users’ connection should be prioritized and thus kept online before
trying to identify all attack requests. Thisworkswith cryptographically secured licenses for legitimate
users. Then, TMH differentiates trust aspects to distinguish between legitimate users and attackers’
trust: short-term, long-term, negative, andmisusing.misusen the license and trust values, the client’s
overall trust is calculated and TMH decides whether to accept his request. The collaborative aspect
of TMH lies in the collaborative trustmanagement amongmultiple servers where TMH is deployed,
in order information about clients’ trust scores.

Technical: Software-based approach to manage trust within an overlay network.
Social: Distinguish four levels of trust for its members (i.e., reputation ranking).
Economical: Not addressed.
Legal: Possible to select circles of trust within the different levels.
Year: 2009.

Velauthapillai, ThaneswaranandHarwood, AaronandKarunasekera, Shanika [247]

[247] presented a gossip-based protocol to exchange information concerning DDoS attacks using a
cooperative overlay network. The authors propose a distributed detection algorithm in which each
participating node locally measures the traffic bit rate routed to a specific victim. These nodes aver-
age their local estimates using the cooperative overlay to check whether the estimate exceeds a fixed
inbound (traffic) threshold at the victim. However, the authors’ approach observes only if the traffic
capacity is exceeded or not, but it does not differentiate between legitimate and malicious traffic.

Technical: Software-based overlay to exchange DDoS detection information.
Social: Members are considered to be trusted.
Economical: Not addressed.
Legal: Partially addressed.
Year: 2010.
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NetFence [130]

NetFence deploys a congestion policing feedback mechanism to guarantee legitimate users a fair
share of network resources [130]. As the name fence suggests, the idea is to establish a trusted net-
work perimeter enabling robust congestion policing within the network. By using a similar approach
than the IP record route (i.e., to tracebackpackets), trusted routers at the boundaries between the net-
work and end systems, record stamp congestion policing feedback within each packet. Based on sim-
ulations,NetFence provably guarantees a legitimate sender its fair share of network resourceswithout
keeping per-host state at the congested link [130].

Technical: Hardware-based approach deployed on border routers.
Social: Members are considered to be trusted.
Economical: Not addressed.
Legal: Partially addressed.
Year: 2010.

FireCol [72]

FireCol [72] focuses on the early discovery ofDDoS attacks proposing anoverlay network composed
by Intrusion Detection or Prevention Systems (IDS or IPS). The overlay of IDS/IPS follows a pub-
lish/subscribe method in each customer collaborate by computing and exchanging belief scores on
potential attacks. Since attacks are highly distributed, the approach’s idea is to explore the distribu-
tion of detection points to provide greater accuracy in detecting attacks. Although belief scores are
computed for advertised attacks, there is no reputation assessment among customers who may act
maliciously and result in false mitigation actions with possible economic impacts on third parties.

Technical: Hardware-based approach based on IDS/IPS systems.
Social: Members are considered to be trusted.
Economical: Not addressed.
Legal: Partially addressed.
Year: 2012.

Bohatei [69]

The emerging paradigm of NFV is often used in conjunction with Software-Defined Networking
(SDN). Through SDN, the data plane is decoupled from the networking infrastructure’s control
plane, allowing tailored solutions for specific networking needs [69]. The routing required to re-
lay the attack traffic in the case of CoFence could be simplified through SDN-based networking as
similar mitigation solutions such as Bohatei, presented by Fayaz et al. [69] demonstrate.

Bohatei serves as a clear indicator of the scalability advantages in using SDN- andNFV-based net-
working to tackle the DDoS defense problem. The Bohatei proof of concept implementation dis-
cussed in [69] is realized with the OpenDaylight SDN controller [172] together with an assortment
ofOpen Source tools to facilitate routing andmitigation such asOpenvSwitch [186], Snort [33], Bro
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[181] and iptables[194]. Experiments conducted by Fayaz et al. show that the Bohatei solution could
mitigate attacks with a total throughput of up to 100 Gbps while only requiring hardware, which was
2.1 to 5.4 times more cost-effective compared to ”fixed defense facilities” [69].

The proof-of-concept implementation of Bohatei as presented by Fayaz et al. does not directly in-
corporate inter-domain DDoS defense, however employing a scheme such as Pushback [95], which
allows edge and access routers to relay traffic filtering to routers further upstream, could expand the
approach and allow multi-domain cooperative defense with the flexibility of SDN and NFV.

Technical: Software-based approach based on SDN and VNF.
Social: Members are considered to be trusted.
Economical: Not addressed.
Legal: Partially addressed.
Year: 2015.

Sahay, Rishikesh and Blanc, Gregory and Zhang, Zonghua and Debar, Hervé [209]

The SDN paradigm offers benefits for network management through the global view of the network
concentrated in a single management point. Based on these benefits, [209] proposes a collaborative
framework that allows the customers to request DDoS mitigation from ASes. The proposal is based
on anSDNcontroller implemented at the customer side interfacedwith theAS,which can change the
anomalous traffic label and redirect them to security middle-boxes. Upon request, ISPs can change
the label of the anomalous traffic and redirect them to security middleboxes to provide on-demand
DDoS mitigation services in an overlay network of trusted peers.

Technical: Software-based approach based on SDN.
Social: Members are considered to be trusted.
Economical: Not addressed.
Legal: Partially addressed.
Year: 2015.

Chin, Tommy and Mountrouidou, Xenia and Li, Xiangyang and Xiong, Kaiqi [40]

[40] proposes an attack detection and mitigation specific to SDN-enabled domains. A factor that
distinguishes the proposed approach is that it operates with both real and virtual or software-based
switches (Open Virtual Switches - OVS [186]) that can be deployed for specific virtual functions.
Themain component within the SDN controller is the monitor and correlator. While the monitor is
responsible for collecting traffic statistics from installed flows, the correlator responds to monitors’
alerts ondemand. Theauthors furtherdescribe a feedback loopwheremultiple correlator’s (deployed
in different domains) communicate with each other to access related OVSs to reveal these attackers
and generate insights into the attack traffic path. Once an attack is confirmed, mitigation actions can
be taken to block attack traffic or reroute attack packets.
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Technical: Software-based approach based on SDN and virtual OVS switches (suitable for
cloud environment).
Social: Members are considered to be trusted.
Economical: Not addressed.
Legal: Partially addressed.
Year: 2015.

Giotis, Kostas and Apostolaki, Maria and Maglaris, Vasilis [78]

[78] presents a similar approach than [209] but including a reputation mechanism, which covers
the possibility of participation of malicious peers in the network. SDN controllers in their proposal
leverage on the SDNi (SDN interface) protocol (to provide lateral communication between SDN
controllers), as the enabler for information exchange between adjacent SDNdomains. Then, the vic-
tim domain can propagate links to incident reports, upstream, over BGP signaling, and mitigators
(i.e., SDN domains helping the victim) can decide whether to devote resources based on the reputa-
tion of the victim.

Technical: Software-based approach based on SDN.
Social: There is a reputation system to evaluate the contribution of peers.
Economical: Not addressed.
Legal: Partially addressed.
Year: 2016.

J. Steinberger and B. Kuhnert and A. Sperotto and H. Baier and A. Pras [232]

[232] uses a similar architecture than IETFDOTS [156] to simplify the exchange of threat informa-
tion among trusted partners is used to reduce the time needed to detect and respond to large-scale
network-based attacks. The authors propose an advertising protocol based on the FLEX (FLow-
based Event eXchange) format, which simplifies the integration and deployment of the solution and
facilitates the communication process between the involved domains. The FLEX standard uses both
signature and encryption methods to prevent unauthorized access to the security event message at
the application layer and ensure the confidentiality of the exchanged information. The main advan-
tage of [232] communication process is that it easily integrates with the existing infrastructure and is
easy to deploy, i.e., it decreases deployment and operation complexities.

Technical: Software-based communication protocol based on FLEX.
Social: Not addressed.
Economical: Not addressed.
Legal: Not addressed.
Year: 2016.
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Collaborative Intrusion Prevention Architecture (CIPA) [38]

CIPA [38] proposes an overlay network for the collaborative intrusion prevention architecture of
DDoS attacks. CIPA builds an Artificial Neural Network (ANN) composed by collaborative SDN
controllers, where eachcontroller implements aneuron(monitoring thenetwork trafficpassing through
them) and extract features that can characterize attacks. Therefore, the whole ANN works like an in-
tegrated IDS/IPS, allowing CIPA to detect attacks on a global view. However, it is noted that there
is no mention of the possibility of malicious controllers, which can manipulate information to dis-
rupt the whole network, as well as provide incentives for the exchange of information andmitigation
actions, in case attacks are confirmed.

Technical: Software-based overlay network based on SDN.
Social: Members are considered to be trusted.
Economical: Not addressed.
Legal: Partially addressed.
Year: 2016.

CoFence [195]

The inter-domain mitigation requires an efficient scheme to provision the filters required to defend
against a large-scale DDoS attack cooperatively. CoFence presented by [195] addresses this problem
by relaying attack traffic to other participants in the cooperative alliance. This circumvents the prob-
lem of filter provisioning and provides a simple check for the mitigation’s efficacy since the partici-
pating systems will only relay back attack-free traffic, which directly proves that they have conducted
the mitigation [195].

Deployment of a CoFence instance relies on Network Function Virtualization (NFV) [164] to
simplify the entire system’s instantiation. Utilizing NFV for a collaborative defense system can help
persuade potential new members of a DDoS alliance to join since device upgrading and creation are
relatively fast and low cost due to the virtualized nature of all networking components [195]. Instead
of relyingonfixedhardware-basednetworking solutions, commodityhardware can launchvirtualized
networking appliances that can be spun up on-demand [69].

Technical: Software-based overlay network based on NFV.
Social: Members are considered to be trusted.
Economical: Not addressed.
Legal: Partially addressed.
Year: 2016.

DDoS Open Threat Signaling (DOTS) [156, 167]

The Internet Engineering Task Force (IETF) Distributed-Denial-of-Service Open Threat Signaling
(DOTS) architecture [156] was devised as a standardization attempt for collaborative DDoS de-
fense. Through theDOTSprotocol, datamodels areprovided toenable intra- and inter-organizational
DDoS defense withmultiple parties [167]. DOTS focuses explicitly on aiding with the coordination
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of attack responses with a client and server model. The DOTS client requests mitigation from the
DOTS server after detecting an ongoing attack [156].

Communication between the DOTS server and client takes place over a data- as well as a signal-
channel. The client uses the signal channel to request mitigation from the server, and the server uses
the signal channel to inform the client about the status of the mitigation [156]. As part of the client’s
information to signal the server for help, attack targets, as well as telemetry data about the attack,
can be provided through the signal channel to simplify the mitigation for the server [156]. The data
channel, which is an optional component in the DOTS scheme, is used to exchange additional con-
figuration information that can then be used and the information transferred through the signaling
channel. These configurations may consist of host identifiers, blacklists, whitelists, traffic filters, or
DOTS client provisioning [156].

Technical: Hardware-based system and protocol supported by IETF.
Social: Members are considered to be trusted.
Economical: Not addressed.
Legal: Partially addressed.
Year: 2017.

Hameed, Sufian and Ahmed Khan, Hassan [85]

[85] proposes a controller-to-controller protocol (i.e., a east/west communication similar to [38,
78]) that allows SDN-controllers to securely communicate and transfer attack information. How-
ever, the authors seek to present a protocol aiming at three aspects: lightweight, efficient, and easy to
deploy. The overlay network is composed of certified domains organized as a source, intermediate,
and destination domains depending on the attack.

Depending on the origin of the reported attack, the domains involved behaving differently to pro-
vide an accurate detection (andmitigation)of the attack. Althoughparticipatingmembers are trusted
(i.e., certified), there are no incentives for them to use their local resources to participate in the col-
laborative detection and mitigation process. This creates the possibility of free-riders who use other
people’s resources without contributing.

Technical: Software-based overlay network based on SDN.
Social: Members are considered to be trusted (certified domains).
Economical: Not addressed.
Legal: Partially addressed.
Year: 2018.

OverWatch [86]

OverWatch [86] presents a cross-plane DDoS attack detection and mitigation framework in SDN.
The detection consists of a coarse-grained flow monitoring algorithm and a fine-grained machine
learning-based attack classification algorithm. The collaborative tracking aims to locate the switches
close to the botnets by looking up the source IP address of a given flow. However, the approach does
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not address the possibility of spoofed IP addresses, which is a common problem in IP traceback ap-
proaches (e.g., IP Traceback [263] and AITF [10]) tomitigate the attack near the source. Also, there
are problems related to malicious and selfish SDN controllers, which may disclose false information
or use other people’s resources without contributing.

Technical: Software-based overlay network based on SDN.
Social: Members are considered to be trusted.
Economical: Not addressed.
Legal: Partially addressed.
Year: 2018.

CoChain [1]

CoChain [1] is a proposal similar (and based on) to this thesis that uses BC as a means of signaling
attacks between internet domains. Despite based on the same set of technologies for the develop-
ment of the proposal, CoChain’s focus is on the aspect of mitigating inter and inter-domain attacks,
and not in the aspect of signaling that expands the applicability of the solution and does not impose
restrictions as to the type of software/hardware to be used in the underlying layers.

Concerning inter-domain communication, the authors proposed a SC-based framework that uses
Ethereum’s technology to facilitate collaboration among SDN-based domain peers, which make use
of a permissionless setting. In a permissionless setting, all information exchanged between peers and
contracts is open to the public, resulting in a issue of confidentiality for peers, impacting social, secu-
rity and legal aspects, about which and how data is shared.

Technical: Software-based approach based on BC and SDN.
Social: Not addressed (i.e., allows permissionless BCs).
Economical: Not addressed.
Legal: Not addressed.
Year: 2019.

Spathoulas,GeorgiosandGiachoudis,NikolaosandDamiris,Georgios-Paraskevasand
Theodoridis, Georgios [229]

[229] propose the deployment of lightweight agents on Internet-of-Things (IoT) devices to detect
DDoS attacks collaboratively. The authors propose a SC in which agents (decentralized apps) de-
ployed on IoT devices can be communicated in a traceable and immutable way. In this regard, the
authors declare that their scheme can be implemented in any BC platform that offers SC functional-
ity. However, it is noted that there is no mention concerning the impacts on the minimum hardware
capacity required in the IoT devices, nor regarding the confidentiality of the information exchanged
between the devices (i.e., the use of permissionless BCs makes all information public). Even if a
software-based approach imposes less overhead for deployment and operation of collaborative de-
fense, the consensus mechanism employed by public BCs (i.e., PoW) requires high computational
power from the participating nodes, which may render the proposal unfeasible.
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Technical: Software-based approach based on BC for signaling attacks.
Social: Not addressed (allows permissionless BCs).
Economical: Not addressed.
Legal: Not addressed.
Year: 2019.

Essaid, Meryam and Kim, DaeYong and Maeng, Soo Hoon and Park, Sejin and Ju, Hong
Taek [66]

[66] presents a BC-based collaborativeDDoSmitigation solution inspired in this thesis (as proposed
in [200]) further combining a deep learningDDoS detection system for the signaling of IP addresses
in the BC. Each participant needs to deploy a SC to join the collaborative DDoS mitigation. In its
turn, SCs define how participants exchange information and parameters defining the cooperative de-
fense (e.g., which networks are managed). The proposal has a significant focus on implementing the
decentralized agent (i.e., dApp) for the detection of attacks and not on the collaborative aspect. In
this sense, the work does not address aspects related to tracking members’ reputations or aspects re-
lated to the provision of financial incentives to cover expenses related to collaborative detection and
mitigation tasks.

Technical: Software-based approach based on BC for signaling attacks.
Social: Not addressed.
Economical: Not addressed.
Legal: Not addressed.
Year: 2019.

Pavlidis, Adam and Dimolianis, Marinos and Giotis, Kostas and Anagnostou, Loukas
andKostopoulos,NikolaosandTsigkritis,TheocharisandKotinas, IliasandKalogeras,
Dimitrios and Maglaris, Vasilis [180]

[180] extended the proposal of a federated BC-based approach proposed by [77], presenting an ap-
proach for signaling, coordination, and orchestration of collaborative mitigation. The authors fur-
ther consider the work proposed in this thesis [200] and their previous work on SDN involving the
tracking of the reputation of collaborative instances [78] to implement their BC-based approach. As
an additional aspect, the authors consider resource allocation within the collaborative instances to
mitigate attacks, modeling a combinatorial optimization problem considering reputation scores and
network flow weight of eachmember. In this sense, their approach presents similar characteristics of
this thesis but does not include the aspect of incentives for the use of third-party infrastructure, i.e.,
there is the possibility of free-riding in the collaborative environment.

Technical: Software-based approach based on BC and SDN.
Social: Provide tracking of reputation.
Economical: Not addressed.
Legal: Partially addressed once is possible to select peers to interact.
Year: 2020.
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B
BloSS Smart Contracts

Thisappendix presents details of implementation aspects of the contracts used inBloSS.Thesystem is
based on two main contracts: the Register and the Protocol. Whereas the Register acts as an anchor
in which peers can find addresses of other peers so that they can interact, the Protocol is the main
contract in which the relationship between target and mitigator is performed.

B.1 Register Contract

TheListing B.1 shows the Register mapping (namedmitigators) and the struct pair of addresses con-
sisting of the Protocol, mitigator as well as a boolean variable. First the mitigator registers with the
setMitigator function by passing a string name and the address of the mitigator itself to the Register.
At this point the Protocol field is defined as the default address value of zero.

Mapping a string to the struct allows for usable name searching for mitigators by the target of the
DDoS attack. Optimally the target already has the address of themitigator andonly needs to initialize
the Protocol for the mitigation signaling to start. But in case the target requests a specific mitigator,
which requires the name of that mitigator to actually exist in the Register, the getMitigator function is
called. Then the address of themitigator is returned to theProtocol, being set as the payablemitigator.
This also allows the mitigator to get the Protocol address and therefore enables interaction with the
Protocol Smart Contract for both parties.
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1 pragma solidity ^0.5.8;
2 import "./Enums.sol";
3
4 contract Register{
5
6 // set new mitigator by a possible mitigator address
7 function setMitigator(string memory _name , address _Mitigator)

public {
8 if(mitigators[_name].isAdded == false){
9 mitigators[_name].Protocol = address(0);

10 mitigators[_name].Mitigator = _Mitigator;
11 mitigators[_name].isAdded = true;
12 }else{
13 emit LogNotValid('Mitigator already registered.');
14 }
15 }
16
17 // gets called by the target via the Protocol and sets Protocol

address to the mapping of the mitigator
18 function getMitigator(address _Protocol , string memory _name)public

returns(address){
19 require(mitigators[_name].Mitigator != msg.sender , "[

getMitigator] Protocol is not allowed to be a Mitigator.");
20 if(mitigators[_name].isAdded){
21 mitigators[_name].Protocol = _Protocol;
22 return mitigators[_name].Mitigator;
23 }else{
24 emit LogNotValid('Mitigator not registered.');
25 return address(0);
26 }
27 }
28
29 // gets called by mitigator , returns address of the Protocol
30 function getProtocol(string memory _name) public view returns(

address){
31 require(mitigators[_name].Mitigator == msg.sender ,'[getProtocol]

You have no permission to see this information.');
32 if(mitigators[_name].Protocol != address(0)){
33 return mitigators[_name].Protocol;
34 }else{
35 return address(0);
36 }
37 }
38
39 function getCreator() public view returns(address){
40 return creatorRegister;
41 }
42 }

Listing B.1: Register Smart Contract
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B.2 Cooperative Signaling Protocol

Listing B.2 summarizes main functions in the BloSS SC, whichmaps initial steps of the SC initializa-
tion, such as setting funds and deadlines to complete the mitigation service (e.g., methods init and
approval). Thus, the execution of the SC prevents one to return states before the SC reaches its final
stage (completion). For instance, it is not possible for an M to send another mitigation proof after
the proof rating by the T (e.g., each method verifies the previous state with the require statement).
Another important aspect of the BloSS SC is the rating by T andM (cf., Listing B.3).

1 f u n c t i o n approve ( boo l d e s c i s i o n ) p u b l i c {
2 r e q u i r e (msg . s ende r==Mi t i g a t o r , "[approve] sender is not required

actor") ;
3 r e q u i r e ( Cu r r e n t S t a t e==Enums . S t a t e .APPROVE, "[approve] State is not

appropriate") ;
4 i f ( d e s c i s i o n ) {
5 Cu r r e n t S t a t e = Enums . S t a t e .FUNDING;
6 } e l s e {
7 endProce s s () ;
8 }
9 }

10 f u n c t i o n sendFunds () p u b l i c p a y ab l e {
11 r e q u i r e (msg . s ende r==Target , "[sendFunds] sender is not required

actor") ;
12 r e q u i r e ( Cu r r e n t S t a t e==Enums . S t a t e .FUNDING, "[sendFunds] State is not

appropriate") ;
13 i f (msg . v a l u e >= Of fe redFunds ) {
14 Cu r r e n t S t a t e = Enums . S t a t e .PROOF;
15 se tNewDead l ine () ;
16 } e l s e {
17 endProce s s () ;
18 }
19 }
20 f u n c t i o n up loadProo f ( s t r i n g memory _Proof ) p u b l i c {
21 r e q u i r e ( Cu r r e n t S t a t e==Enums . S t a t e .PROOF, "[uploadProof] State is not

appropriate") ;
22 // when lazy
23 i f (now > Dead l i ne ) {
24 Cu r r e n t S t a t e = Enums . S t a t e . RATE_T;
25 se tNewDead l ine () ;
26 r e t u r n ;
27 }
28 r e q u i r e (msg . s ende r==Mi t i g a t o r , "[uploadProof] sender is not required

actor") ;
29 Proo f = _Proof ;
30 Cu r r e n t S t a t e = Enums . S t a t e . RATE_T;
31 se tNewDead l ine () ;
32 }

Listing B.2: First Interactions of T and M as Mapped in BloSS: Initiate
SC, Its Acceptance, and an Upload of Proof by M
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Rating actions inListingB.3 considerboth, rational and irrational behavior fromM andT. Whereas
a rational actionmeans that one of the twoparties acts as expected (best scenario)within the possible
protocol alternatives, an irrational action means that either party loses a deadline or acts maliciously.
The rating is the last step before completing the protocol, in which the call returns another function
to complete the protocol, e.g., endProcess().

1 f u n c t i o n r a t i n gB yTa r g e t ( u i n t _Ra t ing ) p u b l i c {
2 // require the number to be 0,1 or 2
3 r e q u i r e ( Cu r r e n t S t a t e==Enums . S t a t e . RATE_T,
4 "[ratingByTarget] State is not appropriate") ;
5 r e q u i r e ( _Rat ing == 0 | | _Ra t ing == 1 | | _Ra t ing == 2 ,
6 "[ratingByTarget] Rating must be 0, 1 or 2") ;
7 i f (now > Dead l i ne ) {
8 Ta r g e tR a t i n g = Enums . Ra t i n g .NOT_AVAILABLE;
9 Cu r r e n t S t a t e = Enums . S t a t e .RATE_M;

10 se tNewDead l ine () ;
11 i f ( b y t e s ( Proo f ) . l e n g t h ==0){
12 r e t u r n endProce s s () ;
13 }
14 r e t u r n ;
15 }
16 r e q u i r e (msg . s ende r==Target ,
17 "[ratingByTarget] sender is not required actor") ;
18 Ta r g e tR a t i n g = Enums . Ra t i n g ( _Rat ing ) ;
19 i f ( b y t e s ( Proo f ) . l e n g t h ==0){
20 r e q u i r e ( _Rat ing == 0 | | _Ra t ing == 1 , "[ratingByTarget]
21 Cannot rate Mitigator positive when no proof is uploaded.")

;
22 r e t u r n endProce s s () ;
23 }
24 Cu r r e n t S t a t e = Enums . S t a t e .RATE_M;
25 se tNewDead l ine () ;
26 }
27 f u n c t i o n r a t i n g B yM i t i g a t o r ( u i n t _Ra t ing ) p u b l i c {
28 r e q u i r e ( Cu r r e n t S t a t e==Enums . S t a t e .RATE_M,
29 "[ratingByMitigator] State is not appropriate") ;
30 r e q u i r e ( _Rat ing == 0 | | _Ra t ing == 1 | | _Ra t ing == 2 ,
31 "[ratingByMitigator] Rating must be 0, 1 or 2") ;
32 i f (now > Dead l i ne ) {
33 Mi t i g a t o r R a t i n g = Enums . Ra t i n g .NOT_AVAILABLE;
34 r e t u r n endProce s s () ;
35 }
36 r e q u i r e (msg . s ende r==Mi t i g a t o r ,
37 "[ratingByMitigator] sender is not required actor") ;
38 Mi t i g a t o r R a t i n g = Enums . Ra t i n g ( _Rat ing ) ;
39 r e t u r n endProce s s () ;
40 }

Listing B.3: Rating by T and M in the BloSS SC
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C
Cooperative SignalingGlobal Latency Evaluations

Listed below performance results in terms of latency to complete the signaling protocol, and their
differences between the standard deviations and median times, are depicted in the Figures Scenario
1 to Scenario 11. Tests are based on the used blockchains ganache, local Rinkeby or global Rinkeby.
Tests run onGanache were set to 15 seconds block time and both Rinkeby tests relied on the average
15 second blocktime. Also, the range of the outliers in close to every scenario is mostly found in the
global Rinkeby tests, for instance in scenarios 3, 5, 6 and 11.

Table C.1: Control Condition Rinkeby Processing Times [s] for Protocol (Tokyo-São Paulo)

Scenario Average Processing Time [s] Standard Deviation [s]

1 89.267 1.543
2 89.579 0.830
3 89.661 0.851
4 104.661 0.966
5 89.427 0.658
6 105.187 1.358
7 120.136 1.204
8 104.924 0.921
9 89.149 0.785
10 103.572 0.718
11 88.235 1.611

Average 97.618 1.040
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Figure C.1: Latency [s] to Execute the Protocol’ Smart Contract. Outcome for Scenarios 1 to
6 [243]
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Figure C.2: Latency [s] to Execute the Protocol’ Smart Contract. Outcome for Scenarios 7 to
11 [243]
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D
Reputation in AcceptanceMode

The tests with the simulator in acceptance mode were performed using different compositions of
customer strategies. The three experiments only differ in measurement duration (from one up to 10
days) and the amount of customers. Figures on the remaining pages present the measured average
Beta reputation by time and customer strategy for all three test runs in acceptance mode.

Figure D.1: Average Target Beta Reputation for First Test in Acceptance Mode, with 10 Customer
Strategies Each [82]

227



Figure D.2: Average Mitigator Beta Reputation for First Test in Acceptance Mode, with 10 Customer
Strategies Each [82]

Figure D.3: Average Mitigator Beta Reputation for Second Test in Acceptance Mode, with 20 Cus-
tomer Strategies Each [82]

Overall, Beta reputation scores for attack targets (T’s) allow to identify a satisfied T, because in
comparison with the undesiredT strategies it develops the highest average reputation value (see Fig-
ure D.1). From Figure D.3 it becomes evident, that dissatisfied and selfish T’s are constantly down-
graded and will eventually no longer receive help from mitigators (M’s), due to their bad rating. It
is not desirable in all circumstances, that satisfied T’s crowd out dissatisfied T’s, since this will incen-
tivize T’s to accept also poorly (or even badly) delivered mitigation services. Because in the current
design, no third party checks that a rating indeed matches the quality of the delivered service, this
problem currently remains unsolved.

After the first mitigation contracts, theM reputation values in Figure D.2 also allow to clearly dis-
tinguish a constant rationalM from the lazyM. However, unlike for theT’s, it is difficult to distinguish
the rationalM from the selfish and uncooperativeM (see Figure D.4). The uncooperativeM usually
shows very low positive and negative reputation, because it aborts mitigation tasks early. Hence,
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Figure D.4: Average Mitigator Beta Reputation for Second Test in Acceptance Mode, with 20 Cus-
tomer Strategies Each [82]

Figure D.5: Average Target Beta Reputation for Third Test in Acceptance Mode, with 50 Customer
Strategies Each [82]

chances of picking an uncooperativeM for a transaction is diminished the most by considering raw
reputation values (especially the amount of positive and negative ratings). Because both, the selfish
and rational M upload proofs, the only difference between the two strategies is, that the selfish M
never rates. Selfish M behavior is an irrational strategy, since the selfish M (deliberately or not) de-
prives itself of reward payments. If we assume, thatM rarely forgets to rate services in the end (which
is the definition of selfish behavior), we can also assume that there exist more rational than selfish
M’s. This leads us to the conclusion, that chances picking a rationalM compared to a selfishM with
the same Beta reputation score are higher, due to the reward incentive.
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Figure D.6: Average Mitigator Beta Reputation for Third Test in Acceptance Mode, with 50 Customer
Strategies Each. [82]
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E
Description of Smart Contract’s Vulnerabilities

This Appendix lists the specific vulnerabilities found in the Smart Contract (SC) vulnerability anal-
ysis. The list includes a brief description of those vulnerabilities.

1. Reentrancy. Reentrancyoccurs if one contract handsover the control to another contract, the
second contract can call back into thefirst one several times before the first initiated interaction
is completed [62]. There are two types of reentrancy:

• Single function reentrancy [211]:
(a) A call, sendor transfer functionwhich canhandover a control to an external contract

is executed.
(b) The external contract has a fallback function.
(c) After the call, send or transfer function was executed, the state is updated.

• Cross-function reentrancy [211]: similar to single function reentrancy, happens when
two different functions or contracts share the same state.

2. Transaction ordering. The state of a contract in which a transaction is executed depends on
the transaction order determined by the block’sminers and cannot be predicted [190] reliably.

3. Block timestamp dependency. Users can generate block timestamps which differ up to 900
seconds from other users’ block timestamps [190]. Often functions rely on the starting time
(StartTime), current time(now) andending time(EndTime),whichdependonblock.timestamp
[190].

4. Blockhash usage. Similar to block timestamp dependency. Malicious users can manipulate
the outcome by changing the blockhash. Example: Using blockhash for generating random-
ness [62].
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5. Exceptionhandling. Noproper exception handling. It is impossible to check the return value
after a function call [190].

6. Call stack depth limitation. The call stack depth limit is hard-coded to 1024 frames. Every
time a call or send function calls another contract, the call stack depth is increased by one [35].

7. Integeroverflowandunderflow. The result of an arithmetic operation is outside of the range
of a Solidity data type [35].

8. Unchecked and failed send. The send function may fail if the gas limit is exceeded or if there
are not enough Ethers on balance. However, the function does not have a built-in error han-
dling [190].

9. Destroyable and suicidal contracts. A smart contract that can be terminated by an anony-
mous suicide or kill function. This function is usually executed by the owner in case of an attack
or an emergency [190].

10. Unsecured balance. The balance of a smart contract is unsecured. Possible reasons include
improper access control for balance and constructor and updating the balance after sending the
money [190].

11. Use of tx.origin. tx.origin returns the account address initiating the transaction [190].

12. Unrestrictedwrite. A write operation to the storage which does not have any restricting con-
ditions [190].

13. Unrestricted transfer. By default, the call function allows to transfer of money between any
users and smart contracts [190].

14. Non-validated arguments. The argumentswhich are not checked before passing to amethod
[190].

15. Greedy contracts. If an external library contract is terminated, the contracts call this library
to become greedy as they cannot access the library and transfer the funds anymore [190].
Besides, some contracts can receive Ethers but lack the instructions for sending themout (e.g.,
, send, transfer, call), or the instructions are unreachable [166].

16. Prodigal contracts. The sending function can be called by any user and can be used to send
funds to any address chosen by the sender [190].

17. Overspent gas. Many patterns in Solidity smart contracts are costly in terms of gas required to
spend for their execution [190]. Gas-costly programming patterns include dead code, opaque
predicate, expensive operations in a loop, the constant outcomeof a loop, loop fusion, repeated
computations in a loop, and comparison with unilateral outcomes in a loop [36].

18. Gasless send. A transaction fails because not enough gas is provided, such as an expensive
function that requires much gas to execute [62].
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19. External calls. A call of an external contract. Pushingdata to an external contract is, in general,
more dangerous than pulling data [62].

20. DoS with unexpected revert. The vulnerability occurs when a conditional statement if, for
or while depends on an external call [62].

21. DoS with unbounded operations. Due to the improper programming of unbounded oper-
ations (e.g., a loop over a large array), the amount of gas required for contract execution may
exceed the gas limit of the block [35].

22. DoSwith block stuffing. Because of the greedymining incentivemechanism, an attacker can
offer a high gasPrice and, thus,motivateminers to prioritize their transactions over others [35].

23. Delegate call injection. Ethereum allows embedding a callee’s bytecode into the caller con-
tract using the delegatecall function. As a result, the caller contract’s state variables can bemod-
ified by the bytecode of the callee contract [35].

24. Ether lost to orphan address. When money is transferred, Ethereum only checks if the re-
cipient’s address is no longer than 160 bit but does not check if the address exists. If money is
sent to a non-existing (orphan) address, Ethereum registers the address automatically. How-
ever, the address does not have any associated user or contract account. Thus, it is impossible
to withdraw the transferred money [35].

25. Manipulatedbalance. Thevulnerability occurs if the contract’s control-flowrelieson this.balance
or address(this).balance, as they can be manipulated by an attacker [35].

26. Outdated compiler version. An outdated compiler may contain unfixed bugs [35].

27. Upgradeable contracts. In order to solve the problem of immutability in blockchain, devel-
opers can split smart contracts into twoparts (a proxy contractwhich remains immutablewhen
added to the blockchain and a logic contract which can be updated by the developer) or use a
registry contract for recording the updates [35].

28. Erroneous visibility. Functions that should not be called from external contracts are some-
times erroneously marked as public or external. As a result, they can be called directly by at-
tackers [35].

29. Secrecy failure. Due to transparency of the blockchain, marking functions and variables as
private does not guarantee data secrecy [35].

30. Insufficientsignature information. Insteadofusingmultiple transactions, a user sendsmoney
to multiple recipients with a proxy contract. The user can send digitally signed messages off-
chain to recipients letting them withdraw the money. The proxy contract validates the digital
signature to check if the transaction is approved. If the digital signature does not contain due
information (e.g., nonce and proxy contact address), a recipient can use the signed message
several times and withdraw additional funds [35].

233



31. Type casts. When a function in an external contract is called using an address argument, the
Solidity compiler checks if the function is declared in the contract but does not check if the ad-
dress argument conforms to its address. If there is another contract with the same declaration
and a function named as in the first contract, the wrong contract’s function may be executed
by mistake [35].

32. Short address. In contract-invocation transactions such as transfer, the selector and argu-
ments are automatically encoded. The first four bytes are reserved for the callee function, and
the rest stands for arguments in chunks of 32 bytes. Thatmeans that if one argument’s last byte
is missed, two hexadecimal zeros are added to the end of the last argument [35].

33. Under-priced opcodes. Some contacts contain many opcodes which have a low gas price
but consume a lot of computing resources [35]. For example, balance, extcodecopy, extcodesize,
sload and suicide are considered under-priced [37].

34. Generating randomness. A seed such as block.number, block.timestamp, block.difficulty and
blockhash used for generating randomness can be manipulated by miners [35].

35. Outsourceable puzzle. Ethereum’s Proof-of-Work puzzle makes a solution only partially se-
quential. Therefore, it is possible to divide a Proof-of-Work task into several parts and out-
source them [35].

36. 51% hashrate. Due to the Proof-of-Work consensus mechanism, attackers can take over the
blockchain if they have at least 51% of the mining power [35].

37. Fixed consensus termination. Ethereums’s consensus protocol uses deterministic termina-
tion to achieve a probabilistic agreement. In other words, if a block is followed by a fixed num-
ber of blocks n, it will most likely remain on the blockchain. When all the block transactions
are committed and the next n blocks are added to the blockchain, the consensus for the block
is terminated. However, in reality, the probability of agreement can be affected by external fac-
tors such as a communication delay as, in an asynchronous network, a deterministic protocol
cannot guarantee agreement, termination, and validity at the same time [35].

38. Rewards for uncle blocks. A stale block referenced by a regular block is called an uncle block.
In Ethereum, not only regular blocks on the main chain but also uncle blocks are rewarded
[35].

39. Unlimited nodes creation. The node generation is weakly restricted. Malicious users can
create an unlimited number of nodes (even with the same IP address) and use them to mo-
nopolize the connections to the victim’s nodes [35].

40. Public peer selection. When a node tries to locate a target, it queries 16 nodes in the bucket
close and asks each of them for 16 closest to the target neighbors. This process iterates until
the target is identified. During this process, the IDs of different nodes are provided to the
querying node. Themapping of a node ID to the buckets in the routing table is public and can
be exploited by attackers [35].
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41. Sole block synchronization. A node may miss the synchronization with another one. If the
second node is malicious, it can delay the synchronization on purpose. As it is only possible
to synchronize with one node at a time in Ethereum, the first node becomes stalled and has to
reject any subsequent blocks [35].
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F
Publications

The thesis’ proposal and development resulted in the publication of several scientific articles, which
are directly or indirectly related to cooperative network defenses. Further, master’s and bachelor’s
theses were developed in the Blockchain Signaling Systems (BloSS) context, whose individual out-
comes in terms of evaluations and system improvements contributed toward the overall BloSS archi-
tecture and results.

F.1 Contribution ofOwn PublicationsWithin Chapters

The thesis objectives outlined at themacro level are typically decomposed into several specific goals,
which are achieved by publications across the thesis period. Thus, it relevant to highlightwhere in the
thesis those publications appear as a core or additional elements in each Chapter. In the case of own
publications as additional elements, references to the state of the art are duly cited when mentioned
in the Chapters, mainly in the cases of Chapters 2 (Theoretical Foundations) and 3 (State-of-the-art
of Cooperative Network Defenses). Table F.1 lists own contributions in the thesis’ Chapters.

It is important to note that [206] is a journal publication, which presents an overview of BloSS in
a summarized way (in contrast to this thesis) based on the contributions of several individual publi-
cations. Thus, [206] appears as a contribution in all Chapters of this thesis.

F.1.1 Chapter 1. Introduction

Refers to the introduction and motivation about the need and relevance of cooperative defenses, as
well as an overview of the thesis. In this sense, [202] and [200] were the first publications that out-
lined the proposal to use Blockchains (BC) as a signaling platform in this context. While [202] was
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Table F.1: List of Publications per Chapter

Chapter Related Publications StudentThesis
Full Paper Short Paper Journal Book Chapter Demo MSc BSc

1. Introduction [200] [202] [206]
2. Theoretical Foundations [206] [148, 203, 217] [73]
3. State-of-the-art of
Cooperative Network
Defenses

[206]

4. Design of the Cooperative
Signaling Protocol [81, 200] [207] [206] [82] [65, 243]

5. Design of the Blockchain Signaling System [81, 141, 197] [108, 109] [206] [82, 107, 142] [65]
6. Evaluation [81, 141, 197] [206] [199, 201] [82, 142] [26, 65]

PublicationDetails
[206] Blockchain Signaling System (BloSS): Cooperative Signaling of Distributed Denial-of-Service Attacks
[202] Multi-Domain DDoS Mitigation Based on Blockchains
[201] Enabling a Cooperative, Multi-domain DDoS Defense by a Blockchain Signaling System (BloSS)
[200] A Blockchain-based Architecture for Collaborative DDoS Mitigation with Smart Contracts
[203] The Use of Blockchains: Application-driven Analysis of Applicability
[148] Análise de Mecanismos para Consenso Distribuído Aplicados a Blockchain
[217] Blockchains and Distributed Ledgers Uncovered:Clarification, Achievements, and Open Issues
[81] A Reputation Scheme for a Blockchain-based Network Cooperative Defense
[141] Toward Mitigation-as-a-Service in Cooperative Network Defenses
[197] Evaluating a Blockchain-based Cooperative Defense
[108] Threat Management Dashboard for a Blockchain Collaborative Defense
[109] Security Management and Visualization in a Blockchain-based Collaborative Defense
[199] Cooperative Signaling of DDoS Attacks in a Blockchain-based Network
[207] SC-FLARE: Cooperative DDoS Signalingbased on Smart Contracts
[82] A Reputation and Reward Scheme for a Cooperative, Multi-domain DDoS Defense
[142] Mitigation as a Service in a Cooperative Network Defense
[26] Cooperative Signaling of DDoS Attacks in a Blockchain-based Network
[65] Performance Analysis of Blockchain Off-chain Data Storage Tools
[243] Cooperative Signaling Protocol
[107] Security Management and Visualization in a Blockchain-based Collaborative Defense
[73] Botnet Command-and-Control Traffic Analysis

a publication made in a workshop for PhD students in order to provide an overview of the topic and
validate research questions, [200] was published at the same event presenting the initial architecture
of the system based on an emulated prototype of BloSS. The emulated prototype presented in [200]
was based on the use ofMininet [123] to emulate different domains (i.e., Autonomous Systems) and
attacking traffic, where BloSS was implemented in an initial version strongly coupled with the con-
troller, based on an Ethereum PoW network.

F.1.2 Chapter 2. Theoretical Foundations

It is the Chapter that provides the conceptual background of the thesis and, in this sense, the pub-
lications made during the thesis period were more comprehensive in terms of how and when to use
Blockchain, e.g., the case of [203] where one of the use cases presented in the book Chapter was of a
cooperative network defense. In the same direction, participation in two other book Chapters [148]
and [217] contributed to this thesis in the description of consensus mechanisms and different types
of blockchains deployment. Concerning another fundamental concept involved in the thesis (DDoS
attacks), Getoar Gallopeni’s bachelor thesis [73] conducted a study of Mirai Botnet in the BloSS
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cluster to evaluate in practice the effects of the bot, mode of propagation and countermeasures, thus,
concepts reported in the literature could be verified in practice.

F.1.3 Chapter 3. State-of-the-art of Cooperative Network Defenses

Describes the state of the art in relation to collaborative network defenses. Altough being one of the
most extensiveChapters in the thesis byproviding awide reviewof the literature, it is not thoughtfully
based on own publications. An overview of major related work is provided in the Journal [206] but
not in detail as Chapter 3 and extended description in Appendix A.

F.1.4 Chapter 4. Design of the Cooperative Signaling Protocol

Describes the final design of BloSS on-chain protocol based on the various refinements and inter-
actions since its initial proposal in [200]. In this regard, the Chapter describe the refined protocol
based several individual contributions. The investigation on the truthfullness of mitigation proofs
performed in [143] revealed the need to integrate a reputation system as there is no automated way
to verify the accuracy of a mitigation service performed by a third party. Hence, the Chapter also
counts on the description of the reputation system proposed in [81, 82], the refined cooperative sig-
naling protocol described in [207, 243], and the off-chain signaling approach [65, 197].

F.1.5 Chapter 5. Design of the Blockchain Signaling System

Describe the decentralized architecture of BloSS interfacing with the cooperative protocol and the
network management system. In its first version published in [200], BloSS was tightly integrated
with the network management system. The architecture refinement included modularization of its
components providing well-defined interfaces that allow the decoupling of the underlying network
management systemwas disclosed in [142, 143], which allowed to simplify the operation and devel-
opment of BloSS, consequently its ease of deployment and operation.

F.1.6 Chapter 6. Evaluation

TheevaluationChapterpresented several evaluationsperformedduring the thesis periodbasedmainly
on the decoupling of architecture [142]. Then, it was possible to perform individual evaluations
on the different components, in different settings (e.g., simulated, local, and global). For instance,
the Chapter disclosed evaluations performed at the local prototype and deployed in the cluster aim-
ing at the assessment of BloSS’ functionalities and correctness [142]. Also, usability assessments of
the dashboard described in [107–109] improved the previous system (published in [200]) with a
focus on improving usability; The performance evaluation of the off-chain signaling channel based
on IPFS [65, 197]. The cooperative signaling protocol latency was evaluated locally and globally
whereas the goal was to assess the correctness the signaling performance (in terms of latency) in all
possible outcomes of the protocol, based on results published in [206, 207]. Further, an analysis on
BloSS contracts conducted in [26] based on local experiments using different automated vulnerabil-
ity assessment tools was included in the Chapter. Lastly, the resulting prototype was published as a
demonstration in [199, 201].
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F.2 List of Publications

This section presents publications made by the author only during the thesis period. In addition to
the previously cited publications that contributed directly to the thesis, participation in the Commu-
nication Systems Group (CSG) research group resulted in the contribution of several other projects
and publications listed in the period 2017 to 2020.

2020

• Full paper. M. Franco, B. Rodrigues, E. Scheid, A. Jacobs, C. Killer, L. Granville, B. Stiller:
SecBot: a Business-Driven Conversational Agent for Cybersecurity Planning and Manage-
ment; 16th International Conference on Network and Service Management (CNSM 2020),
Izmir, Turkey, November 2020, pp 1–7.

• Full paper. Christian Killer,BrunoRodrigues, Eder John Scheid, Muriel Franco, Moritz Eck,
Nik Zaugg, Alex Scheitlin, Burkhard Stiller: Provotum: A Blockchain-Based and End-to-End
Verifiable Remote Electronic Voting System; IEEE 45th Conference on Local Computer Net-
works (LCN), Sidney, Australia, November 2020, pp 1–12.

• Full paper. Clemens Jeger, Bruno Rodrigues, Eder Scheid, Burkhard Stiller. Analysis of Sta-
blecoins during the Global COVID-19 Pandemic. The Second International Conference on
Blockchain Computing and Applications (BCCA 2020).

• Technical Report. Christian Killer, Lucas Thorbecke, Bruno Rodrigues, Eder John Scheid,
Muriel Franco, Burkhard Stiller: Proverum: A Hybrid Public Verifiability for Decentralized
Identity Management; IFI Technical Report 2020.03, Zürich, Switzerland, August 2020.

• Journal. Bruno Rodrigues, Eder Scheid, Christian Killer, Muriel Franco, Burkhard Stiller:
Blockchain Signaling System (BloSS) Cooperative Signaling of DistributedDenial-of-Service
Attacks. Journal of Network and Systems Management ( JNSM), Special Issue on Future of
Network and Service Operations and Management: Trends, Developments, and Directions.
Springer’s.

• Full paper. Muriel Franco, Erion Sula, Bruno Rodrigues, Eder Scheid, Burkhard Stiller. Pro-
tectDDoS: Trustworthy Offering and Recommendation of Protections. 17th International
Conference on the Economics of Grids, Clouds, Systems, and Services (GECON 2020). On-
line conference.

• Demo. Getoar Gallopeni, Bruno Rodrigues, Muriel Franco, Burkhard Stiller: A Practical
Analysis on Mirai Botnet Traffic; IFIP Networking 2020, Paris, France, 22-25 June, 2020.

• White Paper. AlessandroDeCarli,Muriel Franco, AndreasGassmann, ChristianKiller,Bruno
Rodrigues, Eder John Scheid, David Schoenbaechler, Burkhard Stiller: WeTrace: Privacy-
preserving Mobile COVID-19 Tracing Approach and Application; Technical Report, Zürich,
Switzerland, April 2020.
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• Tutorial. Christian Killer, Bruno Rodrigues, Eder Scheid, Muriel Franco, Burkhard Stiller.
Practical Introduction to Blockchain-based Remote Electronic Voting. IEEE International
Conference on Blockchain and Cryptocurrency (ICBC 20). 3-6 May. Toronto, Canada.

• Research Project. BrunoRodrigues,Thomas Bocek, SimonTuck, Burkhard Stiller - PasWITS
- Passives Wireless Intelligence Tracking System. Innovation projects ICT. Inosuisse. 42193.1
IP-ICT.

• Full paper. Scheid, E. J, Widmer P., Rodrigues B., Franco M., Stiller B. A Controlled Natural
Language to Support Intent-based Blockchain Selection; IEEE International Conference on
Blockchain and Cryptocurrency (ICBC 2020), 3-6 May 2020, Toronto, Canada.

• Poster. Bruno Rodrigues, Spasen Trendafilov, Eder Scheid, Burkhard Stiller. SC-FLARE:
Cooperative DDoS Signaling based on Smart Contracts. IEEE International Conference on
Blockchain and Cryptocurrency (ICBC 2020), 3-6 May 2020, Toronto, Canada.

• Tutorial. Bruno Rodrigues, Eder Scheid, Burkhard Stiller. Blockchains in the Age of Soft-
warization – Hands-on Experiences with Programming Smart Contracts and Their Security
Pitfalls. IFIP/IEEE Network Operations and Management Symposium. 20-24 April. 2020.
Budapest, Hungary.

• Full paper. Eder J. Scheid, Daniel Lakic, Bruno Rodrigues, Burkhard Stiller. PleBeuS: a
Policy-based Blockchain Selection Framework. IFIP/IEEE Network Operations and Man-
agement Symposium. 20-24 April. 2020. Budapest, Hungary.

• Full paper. Christian Killer,BrunoRodrigues, RaphaelMatile, Eder Scheid, Burkhard Stiller.
Design and Implementation of Cast-as-Intended Verifiability for a Blockchain-based Voting
System. The 35th ACMSymposium on Applied Computing (SAC).March 30th to April 3rd,
2020. Brno, Czech Republic.

• Book Chapter. Bruno Rodrigues, Muriel Franco, Eder John Scheid, Burkhard Stiller, Salil
Kanhere: A Technology-driven Overview on Blockchain-based Academic Certificate Han-
dling; in: Ramesh Sharma, Hakan Yildirim, Gulsun Meric (Edt.), ”Blockchain Technology
Applications in Education”, IGI Global, Pensilvania, U.S.A, January 2020, ISBN 978-1-522-
59478-9, pp 1–290. doi:10.4018/978-1-5225-9478-9

2019

• Workshop Paper. Christian Killer, Bruno Rodrigues, Burkhard Stiller. Threat Management
Dashboard for a Blockchain Collaborative Defense. 2019 IEEE Globecom Workshops (GC
Wkshps): IEEE GLOBECOM 2019 Workshop on Telecommunications and Blockchain. 9-
13 December 2019 // Waikoloa, HI, USA.

• BookChapter. CharlesMiers,GuilhermeKoslovski,MauricioPillon,MarcosSimplício,Tereza
Carvalho,BrunoRodrigues, JoãoBattisti. AnálisedeMecanismosparaConsensoDistribuído
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Aplicados a Blockchain. Simpósio Brasileiro de Segurança da Informação e de Sistemas Com-
putacionais (SBSeg). São Paulo, 2 a 5 de Setembro, 2019.

• Full Paper. Muriel Franco, Bruno Rodrigues, Burkhard Stiller. MENTOR: The Design and
Evaluation of a Protection Services Recommender System. 15th International Conference on
Network and Service Management (CNSM19). Halifax, Canada, 21-25 October 2019.

• Full paper. Eder J. Scheid, Timo Hegnauer, Bruno Rodrigues, Burkhard Stiller. Bifröst: a
Modular Blockchain Interoperability API. 2019 IEEE 44th Conference on Local Computer
Networks (LCN).

• Full paper. Bruno Rodrigues, Muriel Franco, Geetha Parangi, Burkhard Stiller. SEConomy:
A Framework for the Economic Assessment of Cybersecurity; 16th International Conference
on Economics of Grids, Clouds, Systems, and Services (GECON 2019), Leeds, UK, Septem-
ber 17-19.

• Demo. Bruno Rodrigues, Burkhard Stiller. Cooperative Signaling of DDoS Attacks in a
Blockchain based Network. ACM SIGCOMM 2019 Conference (SIGCOMM Posters and
Demos ’19), August 19–23, 2019, Beijing, China..

• Tutorial. Bruno Rodrigues, Eder Scheid, Roman Blum, Thomas Bocek, Burkhard Stiller.
Blockchain and Smart Contracts – From Theory to Practice. IEEE International Conference
on Blockchain and Cryptocurrency (ICBC 19). 14-17 May. Seul, South Korea.

• Short-paper. Raphael Matile, Bruno Rodrigues, Burkhard Stiller. Cast-as-Intended Verifia-
bility in Blockchain-based Electronic Voting. IEEE International Conference on Blockchain
and Cryptocurrency (ICBC 19). 14-17 May. Seul, South Korea.

• Short-paper. Christian Killer, Bruno Rodrigues, Burkhard Stiller. A Proposal for Security
Management and Visuualization in a Blockchain-based Collaborative Defense. IEEE Interna-
tional Conference on Blockchain and Cryptocurrency (ICBC 19). 14-17 May. Seul, South
Korea.

• Tutorial. Bruno Rodrigues, Eder Scheid, Burkhard Stiller. Information Management in the
Blockchain Era Challenges andOpportunities. 16th IFIP/IEEE International Symposium on
Integrated Network Management (IM 2019). 8-12 April. Washington DC, USA.

• Full paper. Andreas Gruhler, Bruno Rodrigues, Burkhard Stiller. A Reputation and Reward
Scheme for a Cooperative Network Defense. 16th IFIP/IEEE International Symposium on
Integrated Network Management (IM 2019). 8-12 April. Washington DC, USA.

• Full paper. Eder Scheid, Bruno Rodrigues, Lisandro Granville, Burkhard Stiller. Enabling
Dynamic SLA Compensation Using Blockchain-based Smart Contracts. 16th IFIP/IEEE In-
ternational Symposium on Integrated Network Management (IM 2019). 8-12 April. Wash-
ington DC, USA.
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• Experience paper. BrunoRodrigues, Lukas Eisenring, Eder Scheid,Thomas Bocek, Burkhard
Stiller. Evaluating a Blockchain-based Cooperative Defense. 16th IFIP/IEEE International
Symposium on Integrated Network Management (IM 2019). 8-12 April. Washington DC,
USA.

• Short paper. Eder Scheid, Bruno Rodrigues, Burkhard Stiller. Toward a Policy-based Block-
chain Agnostic Framework. 16th IFIP/IEEE International Symposium on Integrated Net-
work Management (IM 2019). 8-12 April. Washington DC, USA.

2018

• Tutorial. Bruno Rodrigues, Roman Blum, Thomas Bocek, Burkhard Stiller. Blockchain and
Smart Contracts: From Theory to Practice . 14th International Conference on Network and
Service Management (CNSM). CNSM Tutorials. Rome, Italy, 2018.

• Workshop Paper. Jerinas Gresch, Bruno Rodrigues, Eder Scheid, Salil S. Kenhere, Burkhard
StillerThe Proposal of a Blockchain-based Architecture for Transparent Certificate Handling.
BSCT 2018: 1st Workshop on Blockchain and Smart Contract Technologies. Berlin, Ger-
many, July 18, 2018.1,2

• Full paper. Stephan Mannhart, Bruno Rodrigues, Eder Scheid, Salil S. Kanhere, Burkhard
Stiller. Towards Mitigation-as-a-Service in Cooperative Network Defenses . The 3rd IEEE
Cyber-Science and Technology Congress.

• Book chapter. Bruno Rodrigues, Thomas Bocek, Burkhard Stiller: The Use of Blockchains:
Application-Driven Analysis of Applicability; in: Pethuru Raj, Ganesh Deka (Edt.), ”Block-
chain Technology: Platforms, Tools and Use Cases, Volume 111 (Advances in Computers)”,
Springer, Waltham, MA, U.S.A, No. 111, September 2018, ISBN 978-0-128-13852-6, pp 1–
22.

2017

• Journal. Riekstin, A. C.,Rodrigues, B.B., Nguyen, K. K., Carvalho, T., Meirosu, C., Stiller, B.,
Cheriet, M. A Survey on Metrics and Measurement Tools for Sustainable Distributed Cloud
Networks, vol. PP, no. 99, pp. 1-1. doi: 10.1109/COMST.2017.2784803, inCommunications
Surveys and Tutorials, IEEE COMST, 2017.

• Demo - Bruno Rodrigues, Thomas Bocek, Burkhard Stiller. Blockchain Signaling System
(BloSS): Enabling a Cooperative and Multi-domain DDoS Defense. Demonstrations of the
42nd Annual IEEE Conference on Local Computer Networks (LCN-Demos 2017). Singa-
pore, 8-12 October.

• Journal. -ThomasBocek, SinaRafati,BrunoRodrigues, Burkhard Stiller. CoinBlesk - AReal-
time, Bitcoin-based Payment Approach and App. ERCIM News - Special Issue: Blockchain
Engineering, Vol. 2017, No. 110, July 2017, pp 14-15.
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• PhD Workshop. - Bruno Rodrigues, Thomas Bocek, Burkhard Stiller. Multi-domain DDoS
Mitigation Based on Blockchains. 11th International Conference on Autonomous Infrastruc-
ture, Management and Security (AIMS 2017). ”Security of Networks and Services in an All-
Connected World”, Zürich, Switzerland, July 2017, ISBN 978-3-319-60773-3, pp 159–164.

• Full paper. Bruno Rodrigues, Thomas Bocek, David Hausheer, Andri Lareida, Sina Rafati,
Burkhard Stiller. A Blockchain-based Architecture for Collaborative DDoS Mitigation with
Smart Contracts and SDN. 11th International Conference on Autonomous Infrastructure,
Management and Security (AIMS 2017). ”Security of Networks and Services in an All Con-
nected World”, Zürich, Switzerland, July 2017, ISBN 978-3-319-60773-3, pp 16–29.

• Poster *Not peer-reviewed*. BrunoRodrigues,ThomasBocek,DavidHausheer, AndriLareida,
Sina Rafati, Burkhard Stiller: Blockchain-based Architecture for Collaborative DDoS Mitiga-
tion using Smart Contracts; 1st ForDigital Blockchain Conference, ”ForDigital Blockchain”,
Karlsruhe, Germany, February 2017.

• Experience paper. ThomasBocek,BrunoRodrigues, TimStrasser, BurkhardStiller: Blockchains
Everywhere - A Use-case of Blockchains in the Pharma Supply-chain; 15th IFIP/IEEE Inter-
national Symposium on Integrated Network Management (IM 2017), ”15th IFIP/IEEE In-
ternational Symposium on Integrated Network Management (IM 2017)”, Lisbon, Portugal,
May 2017, pp 1–6.

• Full paper. Andri Lareida, Romana Pernischova, Bruno Rodrigues, Burkhard Stiller: Ab-
stracting .torrent Content Consumption into Two-modeGraphs and their Projection to Con-
tent Networks (ConNet); 2017 IFIP/IEEE International Symposium on Integrated Network
Management (IM), ”2017 IFIP/IEEE International Symposiumon IntegratedNetworkMan-
agement (IM)”, Lisbon, Portugal, May 2017, pp 1–9.

243



List of Figures

1.1 (a) Number of Connected Devices and (b) Number of Large-scale DDoS Attacks . 2
1.2 Organization and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 SYN Attacks Are The Most Common Form of DDoS Attack as of 2020 [4] . . . . . 16
2.2 Monthly Revenue for Booters by Payment Channel [27] . . . . . . . . . . . . . . 21
2.3 Typical Blockchain Data Structure based on Bitcoin [160] . . . . . . . . . . . . . 28
2.4 A Chain of Blocks with its Canonical Chain Marked in Gray . . . . . . . . . . . . 29
2.5 Merkle Tree Ensuring Integrity of Blocks [160] . . . . . . . . . . . . . . . . . . . 30
2.6 BCs and DLs Types of Deployment [217] . . . . . . . . . . . . . . . . . . . . . . 32
2.7 Trust Boundaries in Permissioned and Permissionless Consensus Algorithms [25] . 33
2.8 Evolution of Blockchain Consensus . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.9 Hybrid Consensus in Single and Multiple Committees . . . . . . . . . . . . . . . 43
2.10 SC Deployment on the Ethereum Virtual Machine (EVM) [253] . . . . . . . . . . 45
2.11 Social Dilemma of False-reporting and Free-riding . . . . . . . . . . . . . . . . . 49
2.12 Threshold-based Reputation Model for Crowd-sourcing Applications [264] . . . . 52
2.13 MAD (Mutual Assured Destruction) Transaction: Price (p) is Locked Inside the

Contract until User (U) and Provider (P) Agree to Payout [116] . . . . . . . . . . 53
2.14 Anonymous Feedback with Blind Signatures [214] . . . . . . . . . . . . . . . . . 54
2.15 The Cosigned Voucher Creates a Monetary Incentive to Leave Feedback [31] . . . 55
2.16 The CIA Triad. Adapted from [80] . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1 Communication Overlay on Hybrid DDoS Defense Mechanisms . . . . . . . . . . 75
3.2 Distribution of Cooperative DDoS Defense Works per Year and Classification of

Mechanism (i.e., Source, Network, Destination, and Hybrid) . . . . . . . . . . . . 80
3.3 Percentage of (a) Work per Classification and (b) Activity Type . . . . . . . . . . . 81
3.4 Percentage of (c) Cooperative Degree and (d) Architectural Type . . . . . . . . . . 82
3.5 Percentage of Addressed Challenges by Hybrid DDoS Mechanisms . . . . . . . . . 83

4.1 Influence of Block Size on Propagation Delay [56] . . . . . . . . . . . . . . . . . . 89
4.2 On-chain Cooperative Signaling Protocol . . . . . . . . . . . . . . . . . . . . . . 93
4.3 Payout Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4 Approaches Toward a VerifiableMitigation Proof [141]: (a) VNFMarketplace, (b)

Trusted Platform, (c) Secure Logging, and (d) Network Slicing . . . . . . . . . . . 97

244



5.1 Metaphor for the Naming Scheme of the Individual BloSS Modules . . . . . . . . 107
5.2 Architecture of the Blockchain Signaling System (BloSS) . . . . . . . . . . . . . . 108
5.3 Classes of the BloSS Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.4 Classes of the Pollen Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.5 Classes of the Stalk Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.6 Duties of the PollenBlockchain Class . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.7 BloSS Defense Scenario Including a T and anM, ASes . . . . . . . . . . . . . . . . 114
5.8 Example of an EthereumContract Setup with the Relay and Cooperative Signaling

Protocol Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.9 Encryption Procedure for Off-chain Data Transfer via IPFS . . . . . . . . . . . . . 118
5.10 Communication of BloSS Core Components (bloss-core) with the REST API . . . 120
5.11 Schematic View of the Network Operator’s Dashboard . . . . . . . . . . . . . . . 120
5.12 State Diagram to Request Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.13 State Diagram to Decide on Mitigation Requests . . . . . . . . . . . . . . . . . . 123

6.1 BloSS Schematic View and Hardware Prototype . . . . . . . . . . . . . . . . . . . 128
6.2 bloss-dashboard UI Running on AS 400. ALARMS_TAB . . . . . . . . . . . . . 132
6.3 bloss-dashboard UI Running on AS 600. REQUESTS_TAB . . . . . . . . . . . 133
6.4 ElapsedTime for aTransactionWithin theUZHNetworkWithDifferent File Sizes.

Bottom to Top: 10 MB, 1 MB, 100 kB, 10 kB. . . . . . . . . . . . . . . . . . . . . 137
6.5 VM Instances Used in the Experiment Configured as in Table 6.5 . . . . . . . . . . 139
6.6 Probability Distribution of Overall Elapsed Time . . . . . . . . . . . . . . . . . . 140
6.7 (a) Australia, (b) Brazil AWS, (c) Brazil Azure, and (d) Germany . . . . . . . . . . 141
6.8 (a) Switzerland, (b) USA, (c) Singapore, and (d) Japan . . . . . . . . . . . . . . . 142
6.10 Average Beta reputation for Attack Targets . . . . . . . . . . . . . . . . . . . . . . 148
6.11 Average Beta Reputation for Mitigators . . . . . . . . . . . . . . . . . . . . . . . 148
6.12 AWS Instances Used in the Experiment . . . . . . . . . . . . . . . . . . . . . . . 154
6.13 Comparison of Global Average Processing Times [s] on Ganache and Local Rinkeby 157

C.1 Latency [s] to Execute the Protocol’ Smart Contract. Outcome for Scenarios 1 to 6
[243] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

C.2 Latency [s] to Execute the Protocol’ Smart Contract. Outcome for Scenarios 7 to
11 [243] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

D.1 Average Target Beta Reputation for First Test in Acceptance Mode . . . . . . . . . 227
D.2 Average Mitigator Beta Reputation for First Test in Acceptance Mode . . . . . . . 228
D.3 Average Target Beta Reputation for Second Test in Acceptance Mode . . . . . . . . 228
D.4 Average Mitigator Beta Reputation for Second Test in Acceptance Mode . . . . . . 229
D.5 Average Target Beta reputation for Third Test in Acceptance Mode . . . . . . . . . 229
D.6 Average Mitigator Beta Reputation for Third Test in Acceptance Mode . . . . . . . 230

245



List of Tables

2.1 Differences Between Types of DoS and DDoS Attack Types . . . . . . . . . . . . 15
2.2 Mapping Tradeoffs between Application Requirements to Blockchain Types . . . . 34
2.3 Comparison of Elected Leader Consensus Algorithms . . . . . . . . . . . . . . . . 42
2.4 Comparison of Tools for Automated Security Audits . . . . . . . . . . . . . . . . 61

3.1 Comparison of Source-based DDoS Defense Mechanisms . . . . . . . . . . . . . 68
3.2 Comparison of Destination-based DDoS Defense Mechanisms . . . . . . . . . . . 70
3.3 Comparison of Network-based DDoS Defense Mechanisms . . . . . . . . . . . . 73
3.4 Analysis of Cooperative Defense Challenges . . . . . . . . . . . . . . . . . . . . . 76

4.1 Benefits and Drawbacks of a BC-based Collaborative Platform in a Cyber-security
Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Qualitative Comparison of Approaches Toward Mitigation-as-a-Service . . . . . . 99
4.3 Cooperative Defense Scenarios with DDoS Attack Target T and MitigatorM . . . . 101
4.4 Attack target (T) strategies: The satisfied T Acknowledges (ack) and Accepts the

Service if a Proof was Uploaded. The Dissatisfied T Always Rejects (rej) the Service 102
4.5 Mitigator (M) Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1 Delay Until Attacks with Different Bandwidths are Blocked . . . . . . . . . . . . . 129
6.2 CPU Usage Statistics [%] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3 Configuration of Instances Used During the Experiments . . . . . . . . . . . . . . 135
6.4 Round Trip Time (RTT) Between Deployed Instances [ms] . . . . . . . . . . . . . 136
6.5 Specifications of Instances Used for the Geographically Distributed Evaluation . . . 138
6.6 Task Configurations and End States . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.7 Reputation Values and Total Number of Interactions . . . . . . . . . . . . . . . . 147
6.8 Assessment of Reputation Frauds . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.9 Average RTT Between Nodes [ms] . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.10 Ganache Processing Times [s] for Protocol . . . . . . . . . . . . . . . . . . . . . 152
6.11 Local Rinkeby Processing Times [s] for Protocol . . . . . . . . . . . . . . . . . . 153
6.12 BloSS Global Rinkeby Processing Times [s] (Zürich-Ohio) . . . . . . . . . . . . . 155
6.13 BloSS Control Condition Processing Times [s] (Tokyo-São Paulo) . . . . . . . . . 156
6.14 BloSS Global Rinkeby Gas Use [Gwei] . . . . . . . . . . . . . . . . . . . . . . . . 158
6.15 Total Average Global Rinkeby Costs per BloSS Instance . . . . . . . . . . . . . . . 158

246



6.16 Number of Findings per Security Audit Tool . . . . . . . . . . . . . . . . . . . . . 160
6.17 Classification of the Security Audit Tools Findings . . . . . . . . . . . . . . . . . 161
6.18 Overview of True Positives and False Positives in the Findings of the Security Audit

Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

C.1 Control Condition Rinkeby Processing Times [s] for Protocol (Tokyo-São Paulo) . 224

F.1 List of Publications per Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

247



List of Listings

2.1 A Simple Hello World SC Example in Solidity . . . . . . . . . . . . . . . . . . . . 46
5.1 Requesting Flow Statistics in Stalk Controller . . . . . . . . . . . . . . . . . . . . 111
5.2 Blocking Attackers Based on an Attack Report . . . . . . . . . . . . . . . . . . . . 112
5.3 Fields of the Attack Report Implemented in BLoSS . . . . . . . . . . . . . . . . . 116
5.4 Example of Storing IP Address Lists Formatted as JSON Objects . . . . . . . . . . 117
6.1 Snippet Protocol Contract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.2 Snippet Migrations Contract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.3 Transfer of Funds in Protocol Contract . . . . . . . . . . . . . . . . . . . . . . . . 163
6.4 Initialization of Protocol Contract . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.5 Check for Empty Proof in Protocol Contract . . . . . . . . . . . . . . . . . . . . . 164
B.1 Register Smart Contract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
B.2 First Interactions of T andM as Mapped in BloSS: Initiate SC, Its Acceptance, and

an Upload of Proof byM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
B.3 Rating by T andM in the BloSS SC . . . . . . . . . . . . . . . . . . . . . . . . . 223

248



CurriculumVitae

PersonalDetails

Name Bruno Bastos Rodrigues
Date of Birth July 03, 1989
Place of Birth Brasília, Distrito Federal (DF), Brazil

Education

August 06 – January 13 Bachelor in Science (B.Sc.)
Center of Technological Sciences
University of the State of Santa Catarina

January 14 – August 16 Master in Engineering (M. Sc.)
Polytechnic School
University of São Paulo

September 16 – February 21 Doctoral program at the University of Zurich
Department of Informatics
Communication Systems Group

Professional Experience

July 12 –December 13 Internship on Network Infrastructure Support
Public Ministry of Santa Catarina State

January 13 – July 14 Internship on Software Development
Staff Informatica Ltda.

January 14 – August 16 Research Assistant
University of São Paulo

October 16 –December 20 Research Assistant
University of Zurich

249


	Introduction
	Cooperative Network Defenses
	Blockchain-based Cooperative Defense
	Research Questions
	Methodology
	Research Methods
	Thesis Contributions
	Thesis Outline

	Theoretical Foundations
	Distributed Denial-of-Service Attacks
	Distributed Denial-of-Service Defense
	The IETF DOTS Standard
	Blockchains and Consensus Mechanisms
	Blockchain as an Enabler of Trust in a Cooperative Defense
	Reputation Tracking and Management
	Security Basics and Blockchain Security
	Key Observations

	State-of-the-art of Cooperative Network Defenses
	Classification of DDoS Defense Mechanisms
	Source-based DDoS Mechanisms
	Destination-based DDoS Mechanisms
	Network-Based DDoS Mechanisms
	Hybrid DDoS Defense Mechanisms
	Analysis of Cooperative Defenses Characteristics and Challenges
	Key Observations

	Design of the Cooperative Signaling Protocol
	Design Considerations
	Cooperative Signaling Protocol
	Reputation Tracking
	Key Observations

	Design of the Blockchain Signaling System
	Architecture
	Defense Scenario
	Off-chain Data Exchange
	BloSS Management Dashboard
	Key Observations

	Evaluation
	Roadmap of BloSS Evaluations
	BloSS Functionality and Correctness
	Dashboard Usability
	Off-chain Signaling Latency
	Reputation Scores
	Cooperative Signaling Protocol Latency
	Smart Contract's Vulnerabilities
	Key Observations

	Summary, Conclusions, and Future Research
	Summary
	Conclusions
	Future Research

	References
	Description of DDoS Cooperative Mechanisms
	Source-based DDoS Mechanisms
	Destination-based DDoS Mechanisms
	Network-Based DDoS Mechanisms
	Hybrid DDoS Defense Mechanisms

	BloSS Smart Contracts
	Register Contract
	Cooperative Signaling Protocol

	Cooperative Signaling Global Latency Evaluations
	Reputation in Acceptance Mode
	Description of Smart Contract's Vulnerabilities
	Publications
	Contribution of Own Publications Within Chapters
	List of Publications


